Compared to several other metal ions with similar chemical properties, zinc is relatively harmless. Only exposure to high doses has toxic effects, making acute zinc intoxication a rare event. In addition to acute intoxication, long-term, high-dose zinc supplementation interferes with the uptake of copper. Hence, many of its toxic effects are in fact due to copper deficiency. While systemic homeostasis and efficient regulatory mechanisms on the cellular level generally prevent the uptake of cytotoxic doses of exogenous zinc, endogenous zinc plays a significant role in cytotoxic events in single cells. Here, zinc influences apoptosis by acting on several molecular regulators of programmed cell death, including caspases and proteins from the Bcl and Bax families. One organ where zinc is prominently involved in cell death is the brain, and cytotoxicity in consequence of ischemia or trauma involves the accumulation of free zinc. Rather than being a toxic metal ion, zinc is an essential trace element. Whereas intoxication by excessive exposure is rare, zinc deficiency is widespread and has a detrimental impact on growth, neuronal development, and immunity, and in severe cases its consequences are lethal. Zinc deficiency caused by malnutrition and foods with low bioavailability, aging, certain diseases, or deregulated homeostasis is a far more common risk to human health than intoxication.
Recent years have brought a paradigm shift for the role of the essential trace element zinc in immunity. Although its function as a structural component of many enzymes has been known for decades, current experimental evidence points to an additional function of the concentration of free or loosely bound zinc ions as an intracellular signal. The activity of virtually all immune cells is modulated by zinc in vitro and in vivo. In this review, we discuss the interactions of zinc with major signaling pathways that regulate immune cell activity, and the implications of zinc deficiency or supplementation on zinc signaling as the molecular basis for an effect of zinc on immune cell function.
Cytosolic alterations of calcium ion concentrations are an integral part of signal transduction. Similar functions have been hypothesized for other metal ions, in particular zinc (Zn2+), but this still awaits experimental verification. Zn2+ is important for multiple cellular functions, especially in the immune system. Among other effects, it influences formation and secretion of pro-inflammatory cytokines, including TNF-α. Here we demonstrate that these effects are due to a physiological signaling system involving intracellular Zn2+ signals. An increase of the intracellular zinc ion concentration occurs upon stimulation of human leukocytes with Escherichia coli, LPS, Pam3CSK4, TNF-α, or insulin, predominantly in monocytes. Chelating this zinc signal with the membrane permeable zinc-specific chelator TPEN (N,N,N′,N′-tetrakis-(2-pyridyl-methyl)ethylenediamine) completely blocks activation of LPS-induced signaling pathways involving p38 MAPK, ERK1/2, and NF-κB, and abrogates the release of proinflammatory cytokines, including TNF-α. This function of Zn2+ is not limited to monocytes or even the immune system, but seems to be another generalized signaling system based on intracellular fluctuations of metal ion concentrations, acting parallel to Ca2+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.