Nanofluids have gained prominence due to their superior thermo-physical properties. The current paper deals with MHD nanofluid flow over a non-linear stretchable surface of varying thickness in the presence of an electric field. We investigated the effects of nanometer-sized copper (Cu) particles in water (base fluid) as a nanofluid, as well as non-linear thermal radiation, variable fluid viscosity, Joule heating, viscous dissipation, and non-uniform heat flux. The current study’s aim is influenced by the immense applications in industry and machine building. It has been observed that linear stretching sheets have been extensively used in heat transfer research. Moreover, no effort has been made yet to model a non-linear stretching sheet with variable thickness. Furthermore, the effects of electromagnetohydrodynamics (EMHD) boundary-layer flow of a nanofluid with the cumulative impact of thermal radiation, variable viscosity, viscous dissipation, Joule heating, and variable heat flux have been investigated. Sheets with variable thicknesses are practically significant in real-life applications and are being used in metallurgical engineering, appliance structures and patterns, atomic reactor mechanization and paper production. To investigate the physical features of the problem, we first examined the model and identified all the physical properties of the problem. This problem has been formulated using basic laws and governing equations. The partial differential equations (PDEs) that govern the flow are converted into a system of non-dimensional ordinary differential equations (ODE’s), using appropriate transformations. The Adam–Bashforth predictor-corrector technique and Mathematica software are utilized to numerically solve the resulting non-dimensionalized system. The interaction of various developing parameters with the flow is described graphically for temperature and velocity profiles. It is concluded that the velocity of nanoparticles declines as the intensity of the magnetic field increases. However, the temperature of the nanomaterials rises, as increasing the values of the electric field also increases the velocity distribution. The radiation parameter enhances the temperature field. The temperature of the fluid increases the occurrence of space- and time-dependent parameters for heat generation and absorption and radiation parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.