Choroideremia (CHM) is an x-linked recessive chorioretinal dystrophy, with 30% caused by nonsense mutations in the CHM gene resulting in an in-frame premature termination codon (PTC). Nonsense-mediated mRNA decay (NMD) is the cell’s natural surveillance mechanism that detects and destroys PTC-containing transcripts, with UPF1 being the central NMD modulator. NMD efficiency can be variable amongst individuals with some transcripts escaping destruction, leading to the production of a truncated non-functional or partially functional protein. Nonsense suppression drugs, such as ataluren, target these transcripts and read-through the PTC, leading to the production of a full length functional protein. Patients with higher transcript levels are considered to respond better to these drugs, as more substrate is available for read-through. Using Quantitative reverse transcription PCR (RT-qPCR), we show that CHM mRNA expression in blood from nonsense mutation CHM patients is 2.8-fold lower than controls, and varies widely amongst patients, with 40% variation between those carrying the same UGA mutation [c.715 C>T; p.(R239*)]. These results indicate that although NMD machinery is at work, efficiency is highly variable and not wholly dependent on mutation position. No significant difference in CHM mRNA levels was seen between two patients’ fibroblasts and their induced pluripotent stem cell-derived retinal pigment epithelium. There was no correlation between CHM mRNA expression and genotype, phenotype or UPF1 transcript levels. NMD inhibition with caffeine was shown to restore CHM mRNA transcripts to near wild-type levels. Baseline mRNA levels may provide a prognostic indicator for response to nonsense suppression therapy, and caffeine may be a useful adjunct to enhance treatment efficacy where indicated.
SummaryAll living cells are subject to agents that promote DNA damage. A particularly lethal lesion are interstrand cross-links (ICL), a property exploited by several anticancer chemotherapies. In yeast and humans, an enzyme that plays a key role in repairing such damage are the PSO2/SNM1 nucleases. Here, we report that Trypanosoma brucei, the causative agent of African trypanosomiasis, possesses a bona fide member of this family (called TbSNM1) with expression of the parasite enzyme able to suppress the sensitivity yeast pso2Δ mutants display towards mechlorethamine, an ICL-inducing compound. By disrupting the Tbsnm1 gene, we demonstrate that TbSNM1 activity is nonessential to the medically relevant T. brucei life cycle stage. However, trypanosomes lacking this enzyme are more susceptible to bi-and tri-functional DNA alkylating agents with this phenotype readily complemented by ectopic expression of Tbsnm1. Genetically modified variants of the null mutant line were subsequently used to establish the anti-parasitic mechanism of action of nitrobenzylphosphoramide mustard and aziridinyl nitrobenzamide prodrugs, compounds previously shown to possess potent trypanocidal properties while exhibiting limited toxicity to mammalian cells. This established that these agents, following activation by a parasite specific type I nitroreductase, produce metabolites that promote formation of ICLs leading to inhibition of trypanosomal growth.
Mutations in the retinol dehydrogenase 12 (RDH12) gene are primarily associated with Leber congenital amaurosis (LCA) type 13, a severe early onset autosomal recessive retinal dystrophy. Only one family with a heterozygous variant, associated with mild retinitis pigmentosa (RP), has been reported. We report a novel heterozygous variant [(c.759del; p.(Phe254Leufs * 24)], resulting in a frameshift and premature termination identified in two unrelated individuals with familial autosomal dominant RP. Both heterozygous variants are associated with a late onset RP phenotype, suggesting a possible genotype-phenotype correlation.
Retinol dehydrogenase 12 (RDH12) structure, function and role in vision. • Disease mechanisms and clinical phenotype of RDH12 retinopathies. • Therapeutic avenues and consideration for future research.
A human induced pluripotent stem cell (hiPSC) line (UCLi013-A) was generated from fibroblast cells of a 34-year-old donor with multiple ocular conditions including severe microphthalmia and aniridia. The patient had a heterozygous missense mutation in
PAX6
c.372C>A, p.(Asn124Lys), validated in the fibroblasts through Sanger sequencing. Fibroblasts derived from a skin biopsy were reprogrammed using integration free episomal reprogramming. The established iPSC line was found to express pluripotency markers, exhibit differentiation potential
in vitro
and display a normal karyotype. This cell line will act as a tool for disease modelling of microphthalmia and aniridia, identification of therapeutic targets and drug screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.