BackgroundRenal cell carcinoma is among the most prevalent malignancies. It is generally sporadic. However, genetic studies of rare familial forms have led to the identification of mutations in causative genes such as VHL and FLCN. Mutations in the FLCN gene are the cause of Birt-Hogg-Dubé syndrome, a rare tumor syndrome which is characterized by the combination of renal cell carcinoma, pneumothorax and skin tumors.MethodsUsing Sanger sequencing we identify a heterozygous splice-site mutation in FLCN in lymphocyte DNA of a patient suffering from renal cell carcinoma. Furthermore, both tumor DNA and DNA from a metastasis are analyzed regarding this mutation. The pathogenic effect of the sequence alteration is confirmed by minigene assays and the biochemical consequences on the protein are examined using TALEN-mediated transgenesis in cultured cells.ResultsHere we describe an FLCN mutation in a 55-year-old patient who presented himself with progressive weight loss, bilateral kidney cysts and renal tumors. He and members of his family had a history of recurrent pneumothorax during the last few decades. Histology after tumor nephrectomy showed a mixed kidney cancer consisting of elements of a chromophobe renal cell carcinoma and dedifferentiated small cell carcinoma component. Subsequent FLCN sequencing identified an intronic c.1177-5_-3delCTC alteration that most likely affected the correct splicing of exon 11 of the FLCN gene. We demonstrate skipping of exon 11 to be the consequence of this mutation leading to a shift in the reading frame and the insertion of a premature stop codon. Interestingly, the truncated protein was still expressed both in cell culture and in tumor tissue, though it was strongly destabilized and its subcellular localization differed from wild-type FLCN. Both, altered protein stability and subcellular localization could be partly reversed by blocking proteasomal and lysosomal degradation.ConclusionsIdentification of disease-causing mutations in BHD syndrome requires the analysis of intronic sequences. However, biochemical validation of the consecutive alterations of the resulting protein is especially important in these cases. Functional characterization of the disease-causing mutations in BHD syndrome may guide further research for the development of novel diagnostic and therapeutic strategies.Electronic supplementary materialThe online version of this article (doi:10.1186/s12881-017-0416-5) contains supplementary material, which is available to authorized users.
SummarySignaling through the hypoxia-inducible factor hif-1 controls longevity, metabolism, and stress resistance in Caenorhabditis elegans. Hypoxia-inducible factor (HIF) protein levels are regulated through an evolutionarily conserved ubiquitin ligase complex. Mutations in the VHL gene, encoding a core component of this complex, cause a multitumor syndrome and renal cell carcinoma in humans. In the nematode, deficiency in vhl-1 promotes longevity mediated through HIF-1 stabilization. However, this longevity assurance pathway is not yet understood. Here, we identify folliculin (FLCN) as a novel interactor of the hif-1/vhl-1 longevity pathway. FLCN mutations cause Birt-HoggDub e syndrome in humans, another tumor syndrome with renal tumorigenesis reminiscent of the VHL disease. Loss of the C. elegans ortholog of FLCN F22D3.2 significantly increased lifespan and enhanced stress resistance in a hif-1-dependent manner. F22D3.2, vhl-1, and hif-1 control longevity by a mechanism distinct from insulin-like signaling. Daf-16 deficiency did not abrogate the increase in lifespan mediated by flcn-1. These findings define FLCN as a player in HIF-dependent longevity signaling and connect organismal aging, stress resistance, and regulation of longevity with the formation of renal cell carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.