Abstract. This paper investigates optimal portfolio strategies in a financial market where the drift of the stock returns is driven by an unobserved Gaussian mean reverting process. Information on this process is obtained from observing stock returns and expert opinions. The latter provide at discrete time points an unbiased estimate of the current state of the drift. Nevertheless, the drift can only be observed partially and the best estimate is given by the conditional expectation given the available information, i.e., by the filter. We provide the filter equations in the model with expert opinion and derive in detail properties of the conditional variance. For an investor who maximizes expected logarithmic utility of his portfolio, we derive the optimal strategy explicitly in different settings for the available information. The optimal expected utility, the value function of the control problem, depends on the conditional variance. The bounds and asymptotic results for the conditional variances are used to derive bounds and asymptotic properties for the value functions. The results are illustrated with numerical examples.
This paper investigates well posedness of utility maximization problems for financial markets where stock returns depend on a hidden Gaussian mean reverting drift process. Since that process is potentially unbounded well posedness cannot be guaranteed for utility functions which are not bounded from above. For power utility with relative risk aversion smaller than those of log-utility this leads to restrictions on the choice of model parameters such as the investment horizon and parameters controlling the variance of the asset price and drift processes. We derive sufficient conditions to the model parameters leading to bounded maximum expected utility of terminal wealth for models with full and partial information.
This paper investigates a financial market where stock returns depend on a hidden Gaussian mean reverting drift process. Information on the drift is obtained from returns and expert opinions in the form of noisy signals about the current state of the drift arriving at the jump times of a homogeneous Poisson process. Drift estimates are based on Kalman filter techniques and described by the conditional mean and covariance matrix of the drift given the observations. We study the filter asymptotics for increasing arrival intensity of expert opinions and prove that the conditional mean is a consistent drift estimator, it converges in the mean-square sense to the hidden drift. Thus, in the limit as the arrival intensity goes to infinity investors have full information about the drift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.