Akıllı ulaşım sistemlerine yönelik çalışmaların son yıllarda artmasıyla birlikte araçtan her şeye (V2X) haberleşme konsepti için farklı standartların geliştirilmesi önem kazanmıştır. Bu doğrultuda 5. Nesil (5G) haberleşmesine yön veren 3GPP ve Wi-Fi haberleşmesine yön veren IEEE gibi organizasyonlar farklı V2X standartları geliştirmişlerdir. Farklı senaryolarda bu iki kritik standardın birbirlerine karşı üstünlükleri olabileceğini gösteren çeşitli çalışmalar bulunmaktadır. Önerilen yöntem ile birlikte farklı şartlar altında 3GPP ve IEEE standartlarından hangisinin kullanılmasının daha avantajlı olacağı yapay öğrenme teknikleri ile belirlenmekte ve uygun V2X standardı otomatik olarak seçtirilmektedir. Bu kapsamda araçta ve çevre sistemlerinde her iki standartla ilişkili donanımların bulunduğu varsayılmaktadır. Bu amaca yönelik yeni bir yapay veri seti oluşturulmuş ve K-en yakın komşu, karar ağacı, yapay sinir ağı ile TabNet sınıflandırıcıları kullanılarak çeşitli yapay öğrenme modelleri eğitilmiştir. Ayrıca çapraz doğrulama ile hiperparametre optimizasyonu gerçekleştirilmiştir. TabNet sınıflandırıcısı ile doğruluk değeri ve ağırlıklı F1 skoru 0.88 olarak elde edilmiştir. Tüm bu çalışmalar beraber ele alındığında, V2X haberleşmesine yönelik özgün bir çalışma yapılarak literatüre önemli bir katkı sağlandığı görülmüştür. Geliştirilen yapay öğrenme tabanlı V2X standardı seçtirme yönteminin akıllı ulaşım sistemleri altındaki araçlara entegre edilebileceği düşünülmektedir.
Bu makale, öğrencilerin akademik performansının otomatik olarak sınıflandırılmasında yaygın olarak kullanılan özelliklerin katkılarını analiz etmektedir. Bu sınıflandırma probleminde, çeşitli öznitelikler ve sınıflandırıcılar arasındaki ilişki, kapsamlı bir öznitelik seçim stratejisi kullanılarak analiz edilmiştir. Bu şekilde, en yüksek sınıflandırma performansını sağlayan optimal öznitelik alt kümesi elde edilmiştir. Bu amaçla 15 farklı öznitelik ve 480 örnekten oluşan bir akademik performans veri seti kullanılmıştır. Öznitelikler demografik, akademik geçmiş, ebeveyn katılımı ve davranışsal olmak üzere dört farklı kategoriye aittir. Örnekler, öğrenci başarısının düşük, orta ve yüksek seviyelerine karşılık gelen üç farklı sınıftandır. Değerlendirmeler için 10 farklı sınıflandırma algoritması kullanılmıştır. Kapsamlı deneysel analizler, öğrencilerin akademik performansını sınıflandırma doğruluğunun, özniteliklerin tamamı yerine yalnızca 8 tanesi kullanılarak, %79.40'a kadar artırılabileceğini ortaya koymaktadır.
Makine öğrenmesinin alt sınıfı olan derin öğrenme, birden çok katman ile ham veriden özelliklerin çıkarılmasını sağlamaktadır. Son yıllardaki teknolojik gelişmeler ile özellikle sağlık alanındaki görüntü işleme çalışmalarında sıklıkla tercih edilmektedir. Başarılı sonuçlar elde etmek için derin öğrenme modellerindeki parametrelerin optimize edilmesi gerekir. Bu işlemin belli bir düzeyde yazılım bilgisi gerektirmesi, alana yeterince hâkim olmayan kişilere zorluk oluşturabilmektedir. Araştırmacılar, kodlama gerektirmemesi nedeniyle hazır derin öğrenme modellerini ve görsel araçları tercih edebilmektedirler. Bu çalışmada önerilen uygulama aracılığıyla, manyetik rezonans görüntüleme taramaları için kompleks derin öğrenme işlemlerinin doğrudan grafik arayüzü üzerinden gerçekleştirilmesi hedeflenmektedir. Uygulama; veri seçimi, ön işleme, model oluşturma, eğitim ve test ana modüllerinden oluşmaktadır. Önde gelen bazı derin öğrenme modelleri uygulamaya entegre edilmiş olarak sunulmaktadır. İzlenen uyumluluk tasarımı sayesinde gelecekte yeni mimarilerin de kolaylıkla eklenebilmesinin önü açılmıştır. Modüller, açık kaynak manyetik rezonans görüntüleme verisi aracılığıyla doğrulanarak uygulamanın test tabanlı geliştirilmesi sağlanmıştır. Fonksiyonellik doğrulama testlerinde üç boyutlu evrişimsel sinir ağı kullanılarak literatüre paralel şekilde %81 doğruluk oranı gözlemlenmiştir. Uygulamanın radyoloji uzmanları ve araştırmacılar gibi kullanıcılar tarafından karar destek amacıyla kullanılabileceği düşünülmektedir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.