This paper presents a general framework for the analysis of time sequences. Features extracted include speed, acceleration and disparity/depth. The method uses spatio-temporal filtering in a hierarchical struc ture. Synthetic and real world examples are included.
A framework for computer-aided analysis of mammograms is described. General computer vision algorithms are combined with application specific procedures in a hierarchical fashion. The system is under development and is currently limited to detection of a few types of suspicious areas. The image features are extracted by using feature extraction methods where wavelet techniques are utilized. A low-pass pyramid representation of the image is convolved with a number of quadrature filters. The filter outputs are combined according to simple local Fourier domain models into parameters describing the local neighbourhood with respect to the model. This produces estimates for each pixel describing local size, orientation, Fourier phase, and shape with confidence measures associated to each parameter. Tentative object descriptions are then extracted from the pixel-based features by application-specific procedures with knowledge of relevant structures in mammograms. The orientation, relative brightness and shape of the object are obtained by selection of the pixel feature estimates which best describe the object. The list of object descriptions is examined by procedures, where each procedure corresponds to a specific type of suspicious area, e.g. clusters of microcalcifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.