Two Machine Learning algorithms -LASSO and Random Forest -are applied to derive regression models for the prediction of gas bubble diameters using supervised learning techniques. Experimental data obtained from wire-mesh sensor (WMS) measurements in a deionized water/air system serve as the data base. Python libraries are used to extract features characterizing WMS measurement signals of single passing bubbles. Prediction accuracy is largely increased with the obtained regression models, compared to well-established methods to predict bubble sizes based on WMS measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.