This paper investigates three categories of algorithms for direct volume rendering of unstructured grids, which are image-space, object-space, and hybrid methods. We propose three new algorithms. Cell Projection algorithm, which falls into object-space category, is capable of rendering non-convex meshes through a simple yet efficient sorting schema that exploits both image and object space coherencies. Existing hybrid methods use object-then-image traversal order that enforces the processing of each cell. Thus, these algorithms perform redundant operations and do not support early ray termination. We propose a hybrid method, called Span-Buffer Ray Casting (SBRC), that can support early ray termination discarding redundant operations by employing image-then-object traversal order. Another hybrid method, called Koyamada-SBRC (K-SBRC), is proposed with the motivation of refining image-space and hybrid methods to extract the best features of them. This method is developed by blending SBRC approach with Koyamada's algorithm, which is an efficient image-space algorithm. All proposed algorithms are capable of handling acyclic non-convex meshes and generating images of acceptable quality. SBRC and K-SBRC algorithms have the additional capabilities of rendering cyclic meshes and supporting early ray termination. The proposed algorithms and Koyamada's algorithm are implemented and experimented in a common framework for analyzing their relative performance. © 2003 Elsevier Science Ltd. All rights reserved
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.