Cervical disk herniation (CDH) is a disease that affects the quality of life of many people due to the neck pain it causes. The aim of this study was to develop an automatic prediction system to aid in diagnosis by evaluating the change in the surface electrical activity of the trapezius muscle in SDH disease in order to find an answer to the question: 'Can the surface electromyogram (sEMG) recorded from the trapezius muscle be an effective indicator for the diagnosis of SDH disease?'. To this end, a dataset will be created using preprocessing and feature extraction methods from sEMG signals from CDH patients and healthy individuals. In the first step, the Savitsky-Golay filter is used to denoise the sEMG signals and the dominant frequency signals between 20 and 150 Hz are included in the study using the Butterworth filter design. Twenty PSD-based features in the frequency domain were then obtained from the signals to which we applied the Burg method. Eleven of the most significant features based on the information gain, gain ratio, and Gini values are selected to be submitted to the classifiers. 80% of all new feature areas are used for classification and the rest for prediction. The best classification accuracy of 91.6% was obtained with the Tree classifier using 10-fold cross-validation for classification. In addition, neural networks and CN2 rule inducer provided 87.5% classification accuracy for prediction using 20% of the remaining data that the classifiers had not seen before. The experimental results demonstrate that the trapezius muscle has different surface electrical activity in CDH patients and healthy subjects and that the frequency domain characteristics of this activity are important for disease prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.