This work deduces the lower and the upper triangular factors of the inverse of the Vandermonde matrix using symmetric functions and combinatorial identities. The L and U matrices are in turn factored as bidiagonal matrices. The elements of the upper triangular matrices in both the Vandermonde matrix and its inverse are obtained recursively. The particular valuex i = 1 + q + · · · + q i−1 in the indeterminates of the Vandermonde matrix is investigated and it leads to q-binomial and q-Stirling matrices. It is also shown that q-Stirling matrices may be obtained from the Pascal matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.