Astrocytes regulate synaptic connectivity in the CNS through secreted signals. Here we identified two astrocyte-secreted proteins, hevin and SPARC, as regulators of excitatory synaptogenesis in vitro and in vivo. Hevin induces the formation of synapses between cultured rat retinal ganglion cells. SPARC is not synaptogenic, but specifically antagonizes synaptogenic function of hevin. Hevin and SPARC are expressed by astrocytes in the superior colliculus, the synaptic target of retinal ganglion cells, concurrent with the excitatory synaptogenesis. Hevin-null mice had fewer excitatory synapses; conversely, SPARC-null mice had increased synaptic connections in the superior colliculus. Furthermore, we found that hevin is required for the structural maturation of the retinocollicular synapses. These results identify hevin as a positive and SPARC as a negative regulator of synapse formation and signify that, through regulation of relative levels of hevin and SPARC, astrocytes might control the formation, maturation, and plasticity of synapses in vivo.F ormation of the correct type and number of synaptic connections is crucial for the proper development and function of our nervous systems. In the past decade, astrocytes have emerged as important regulators of synaptic connectivity (1, 2).By using a purified retinal ganglion cell (RGC) culture system (3), we previously showed that astrocyte-secreted factors, including a family of ECM proteins, thrombospondins (TSPs), significantly increase the number of synapses formed between RGCs (4-6). These in vitro findings paved the way for recognition of astrocytes, and the TSPs they secrete, as important regulators of synapse formation and injury-mediated synaptic remodeling in vivo (4,5,7).TSPs belong to a subclass of secreted proteins called matricellular proteins. Matricellular proteins function by modulation of cell-cell and cell-matrix interactions, and thereby regulate the adhesion state of cells (8). Astrocytes express a number of matricellular proteins in addition to TSPs, and their expression is developmentally regulated and overlaps with early postnatal periods of synaptic development in the CNS (9, 10).In the present study we investigated whether other astrocytesecreted matricellular proteins could modulate synapse formation. Gene expression profiling of astrocytes suggested the matricellular proteins hevin [also known as secreted protein acidic and rich in cysteine (SPARC)-like 1] and SPARC as possible candidates. Hevin and SPARC are members of the SPARC family (11). Hevin was first identified as a synaptic glycoprotein and was initially termed synaptic cleft-1, or SC1 (12). It is localized to excitatory CNS synapses (13). Astrocytes in the developing brain express high levels of hevin and SPARC mRNA, with hevin mRNA being one of the highest-level mRNAs expressed by astrocytes (10). Unlike TSP1 and TSP2, the expression of which is decreased during maturation, hevin and SPARC mRNA levels remain high in the adult (9, 14-16).Here we investigated whether hevin and SPARC p...
The complex behaviors underlying reward seeking and consumption are integral to organism survival. The hypothalamus and mesolimbic dopamine system are key mediators of these behaviors, yet regulation of appetitive and consummatory behaviors outside of these regions is poorly understood. The central nucleus of the amygdala (CeA) has been implicated in feeding and reward, but the neurons and circuit mechanisms that positively regulate these behaviors remain unclear. Here, we defined the neuronal mechanisms by which CeA neurons promote food consumption. Using in vivo activity manipulations and Ca imaging in mice, we found that GABAergic serotonin receptor 2a (Htr2a)-expressing CeA neurons modulate food consumption, promote positive reinforcement and are active in vivo during eating. We demonstrated electrophysiologically, anatomically and behaviorally that intra-CeA and long-range circuit mechanisms underlie these behaviors. Finally, we showed that CeA neurons receive inputs from feeding-relevant brain regions. Our results illustrate how defined CeA neural circuits positively regulate food consumption.
Basal amygdala (BA) neurons guide associative learning via acquisition of responses to stimuli that predict salient appetitive or aversive outcomes. We examined the learning-and statedependent dynamics of BA neurons and ventral tegmental area dopamine axons that innervate BA (VTA DA➜BA ) using two-photon imaging and photometry in behaving mice. BA neurons did not respond to arbitrary visual stimuli, but acquired responses to stimuli that predicted either rewards or punishments. Most VTA DA➜BA axons were activated by both rewards and punishments, and acquired responses to cues predicting these outcomes during learning. Responses to cues predicting food rewards in VTA DA➜BA axons and BA neurons in hungry mice were strongly attenuated following satiation, while responses to cues predicting unavoidable punishments persisted or increased. Therefore, VTA DA➜BA axons may provide a reinforcement signal of motivational salience that invigorates adaptive behaviors by promoting learned responses to appetitive or aversive cues in distinct, intermingled sets of BA excitatory neurons.Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.