Cryptocurrencies, such as Bitcoin, are one of the most controversial and complex technological innovations in today's financial system. This study aims to forecast the movements of Bitcoin prices at a high degree of accuracy. To this aim, four different Machine Learning (ML) algorithms are applied, namely, the Support Vector Machines (SVM), the Artificial Neural Network (ANN), the Naïve Bayes (NB) and the Random Forest (RF) besides the logistic regression (LR) as a benchmark model. In order to test these algorithms, besides existing continuous dataset, discrete dataset was also created and used. For the evaluations of algorithm performances, the F statistic, accuracy statistic, the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) and the Root Absolute Error (RAE) metrics were used. The t test was used to compare the performances of the SVM, ANN, NB and RF with the performance of the LR. Empirical findings reveal that, while the RF has the highest forecasting performance in the continuous dataset, the NB has the lowest. On the other hand, while the ANN has the highest and the NB the lowest performance in the discrete dataset. Furthermore, the discrete dataset improves the overall forecasting performance in all algorithms (models) estimated.
The main purpose of this article is to determine the factors affecting credit rating and to develop the credit rating system based on statistical methods, fuzzy logic and artificial neural network. Variables used in this study were determined by the literature review and then the number of them was reduced by using stepwise regression analysis. Resulting variables were used as independent variables in the logistic model and as input variables for ANN and ANFIS model. After evaluating the models and comparing with each other, the ANFIS model was chosen as the best model to forecast credit rating. Rating determination was made for the countries that haven't had a credit rating. Consequently, the ANFIS model made consistent, reliable and successful rating forecasts for the countries.
Bu çalışma BIST 100 borsa endeksinin negatif ve pozitif yönlü hareketlerinin tahmin edilmesini konu edinmektedir. Yapay sinir ağı, destek vektör makinesi ve naive Bayes algoritmasının tahmin performansları karşılaştırılmaktadır. Analizler iki aşamalı olarak yapılmaktadır. Birinci aşamada tahmin modellerinde girdi olarak kullanılacak dokuz adet teknik gösterge, borsa endeksi açılış, kapanış, en yüksek ve en düşük fiyatlar, kullanılarak hesaplanmakta ve sürekli olan bu teknik göstergeler barındırdıkları trende göre kategorize edilerek yeni bir veri seti oluşturulmaktadır. İkinci aşamada ise, trend belirleyici veri seti girdi olarak kullanılmakta ve seçilen üç makine öğrenme algoritması kullanılarak tahminler yapılmaktadır. BIST 100 veri seti 2009-2018 Aralığını kapsayan günlük kapanış fiyatlarını içermektedir. Analizlerle, destek vektör makineleri algoritmasının en iyi sınıflandırıcı olduğu sonucuna ulaşılmıştır. Ayrıca, daha önceki benzer çalışmalarla karşılaştırmalar yapılarak gerek kullanılan veri seti gerekse tahmin modellerinin etkileri tartışılmaktadır.
Ö zFinansal zaman serilerinin barındırdığı belirsizlik, kaotik hareketler yanında doğrusal olmayan dinamik yapı, tahminleri oldukça güçleştirmektedir. Borsa endekslerinin politik değişimler, ekonominin genel görünümü, yatırımcıların beklenti ve yatırım tercihleri ve diğer endekslerin hareketleri gibi birçok makroekonomik faktörden etkilenmeleri, endeks tahminlerini oldukça zor ancak bir o kadar da çekici kılmaktadır. Borsa endeksi hareketleri ve geleceğe dönük tahminler üretmede makine öğrenme algoritmalarının başarılı oldukları bilinmektedir. Bu çalışmada BIST 100 endeksi hareketlerinin yönünün tahmin edilmesi problemi ele alınmıştır. Üç farklı makine öğrenme algoritması olan yapay sinir ağları, destek vektör makineleri ve naive Bayes sınıflandırıcı algoritması kullanılmış ve performansları karşılaştırılmıştır. Borsa endeksi tahminleri için kullanılan on teknik gösterge modeller için girdi olarak kullanılmıştır. Veri seti 2009-2018 periyodunu kapsayan günlük kapanış değerlerini içermektedir. Analiz sonuçları, her üç modelin de borsa endeks hareketlerini yakalamada kullanılabilir olduğunu, yapay sinir ağı algoritmasının ise daha iyi bir sınıflandırıcı olduğunu göstermiştir.Anahtar Kelimeler: BIST100, yapay sinir ağları, destek vektör makineleri, naive Bayes, makine öğrenme JEL Sınıflandırması: C44, C45 PREDICTING STOCK MARKET MOVEMENT BY USING MACHINELEARNING ALGORITHM A b s t r a c tIn addition to the uncertainty and chaotic movements of the financial time series, the nonlinear dynamic structure makes the forecasts very difficult. The fact that the stock market index are affected by the political changes, the general outlook of the economy, the investors' expectations and investment preferences, and the movements of other indexes, make the index estimates quite difficult but attractive. It is known that the machine learning algorithms are successful in estimating stock index movements and their future values. In this study, the problem of forecasting the direction of BIST 100 index movements is discussed. Three different machine learning algorithms, artificial neural networks, support vector machines and naïve Bayes classifier were used and their performances were compared. Ten technical indicators were used as inputs for the models. The data set consists of ten-year daily closing price values covering the 2009-2018 period. Analysis results show that the models can be used to capture stock market index movements, whereas artificial neural network algorithm is a better classifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.