Abstract:In this paper, the restricted Bayes approach is studied in a decentralized detection problem. All decisions on which the hypothesis is true are made by local sensors through conditionally independent observations. Then these decisions are transmitted to the fusion center for the final decision. In the conventional approach, all thresholds of local sensors and the fusion center are considered as deterministic variables and optimized according to the given criterion for given test statistics of local sensors and the fusion center. In this paper, it is shown that setting thresholds as random variables instead of deterministic ones can improve the performance according to the restricted Bayes criterion. It is proved that optimal random thresholds are dependent on each other, and the probability density function of each one consists of at most two point masses. Two methods for the implementation of this scheme are proposed. A necessary and sufficient condition for improvability of the conventional approach through replacing optimal deterministic thresholds by optimal random ones is derived. Finally, theoretical results are investigated through simulations.
This paper investigates effects of adding dependent random signals (additive noises) to observations of local sensors in decentralized fusion problems, where the decision of each local sensor is directly transmitted to the fusion center for the final decision according to Neyman-Pearson criterion. Threshold of the fusion center and random signals added to observations of local sensors are modeled as random variables dependent on each other but independent from the observations at the local sensors. Simulation results are presented to investigate performance of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.