This study is concerned with the effects of V and Mo addition on tensile and Charpy impact properties of API X70 linepipe steels. Twelve kinds of steel specimens were produced by varying V and Mo additions and rolling conditions. The addition of V and Mo promoted the formation of acicular ferrite (AF), banitic ferrite (BF), and martensite-austenite (MA) constituents, while suppressing the formation of polygonal ferrite (PF) or pearlite (P). The tensile test results indicated that the tensile strength of the specimens rolled in the two-phase region increased with the addition of V and Mo, while the yield strength did not vary much in these specimens except the water-cooled specimens, which showed the increased yield strength with addition of Mo. The tensile strength of specimens rolled in the single-phase region followed by water cooling increased with increasing V and Mo contents. The yield strength, however, did not vary much with increasing V content or with addition of Mo to the low-V alloy. In these specimens, a substantial increase in the strengths was achieved only when Mo was added to the high-V alloy. The specimens rolled in the single-phase region had higher upper-shelf energy (USE) and lower ductile-brittle transition temperature (DBTT) than the specimens rolled in the two-phase region, because their microstructures were composed of AF and fine PF. According to the electron backscatter diffraction (EBSD) analysis data, the effective grain size in AF was determined by crystallographic packets composed of a few fine grains having similar orientations. Thus, the decreased DBTT in the specimens rolled in the single-phase region could be explained by the decrease in the overall effective grain size due to the presence of AF having smaller effective grain size.
A twin-roll cast (TRC) AZ31-0.7Ca alloy sheet has been subjected to thermo-mechanical treatment (TMT) followed by annealing and its microstructure was evaluated. The as-cast microstructure of TRC AZ31-0.7Ca alloy is essentially similar to that of TRC AZ31 alloy, except for the presence of Al 2 Ca dispersoid particles. The presence of Al 2 Ca particles imparts significant changes to the microstructure of TMT-ed TRC alloy such as the refinement of grain size and evolution of textures different from those of ingot cast and TRC AZ31 alloys.
In this study, three Fe-base amorphous alloys with quite different critical cooling rates were subjected to twin-roll strip casting to see the possibility of fabricating amorphous sheet by the same process. Continuous cooling transformation (CCT) diagrams of the alloys were calculated using the heterogeneous nucleation theory coupled with thermal data obtained during cooling to evaluate their critical cooling rates and glass forming abilities (GFAs). It shows that the GFAs calculated by CCT diagram are in agreement with the experimental results, while the well known empirical thermal parameters do not agree with the experimental results. Optimum twin-roll strip casting conditions have been determined based on the calculated critical cooling rates and the simulated thermal behavior of the sheet during twin-roll strip casting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.