The combined effect of the 222-nm krypton-chlorine (KrCl) excilamp and ohmic heating for the inactivation of Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Escherichia coli O157:H7 in apple juice was investigated in this study. When ohmic heating and a KrCl excilamp were applied to apple juice simultaneously, the reduction level of E. coli O157:H7 following 70 s (target temperature of 65.9 C) of combination treatment reaching 4.6 log CFU/ml was significantly higher than that of each treatment alone (2.7 log CFU/ml). The same trend, indicating a synergistic bactericidal effect, was observed for L. monocytogenes and S. Typhimurium. Therefore, the combination treatment of the KrCl excilamp and ohmic heating can be used effectively to control bacterial pathogens in apple juice with a reduced processing time. Practical applicationsDemands for energy-efficient and environmentally friendly bactericidal apparatuses have been increasing. Although the mercury UV lamp has been widely used to inactivate foodborne pathogens in water or juice products individually or combined with heat treatment, the use of this conventional lamp will be limited continuously in accordance with the Minamata Convention treaty, which restricts the use of mercury. Thus, it is of interest to identify the bactericidal effect of an alternative UV-C lamp and its combination with heat treatment. The synergistic bactericidal effect of the KrCl excilamp and ohmic heating, which are alternative nonthermal and thermal technologies, respectively, was identified in the present study. The results indicated in this study could be utilized by juice processors to achieve a 5-log reduction in foodborne pathogens.
The aim of this study was to investigate the sporicidal effect of a krypton-chlorine (KrCl) excilamp against Alicyclobacillus acidoterrestris spores and to compare its inactivation mechanism to that of a conventional UV lamp containing mercury (Hg). The inactivation effect of the KrCl excilamp was not significantly different from that of the Hg UV lamp for A. acidoterrestris spores in apple juice despite the 222-nm wavelength of the KrCl excilamp having a higher absorption coefficient in apple juice than the 254-nm wavelength of the Hg UV lamp; this is because KrCl excilamps have a fundamentally greater inactivation effect than Hg UV lamps, which is confirmed under ideal conditions (phosphate-buffered saline). The inactivation mechanism analysis revealed that the DNA damage induced by the KrCl excilamp was not significantly different (P > 0.05) from that induced by the Hg UV lamp, while the KrCl excilamp caused significantly higher (P < 0.05) lipid peroxidation incidence and permeability change in the inner membrane of A. acidoterrestris spores than did the Hg UV lamp. Meanwhile, the KrCl excilamp did not generate significant (P > 0.05) intracellular reactive oxygen species, indicating that the KrCl excilamp causes damage only through the direct absorption of UV light. In addition, after KrCl excilamp treatment with a dose of 2,011 mJ/cm2 to reduce A. acidoterrestris spores in apple juice by 5 logs, there were no significant (P > 0.05) changes in quality parameters such as color (L*, a*, and b*), total phenolic compounds, and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity. IMPORTANCE Alicyclobacillus acidoterrestris spores, which have high resistance to thermal treatment and can germinate even at low pH, are very troublesome in the juice industry. UV technology, a nonthermal treatment, can be an excellent means to control heat-resistant A. acidoterrestris spores in place of thermal treatment. However, the traditionally applied UV sources are lamps that contain mercury (Hg), which is harmful to humans and the environment; thus, there is a need to apply novel UV technology without the use of Hg. In response to this issue, excilamps, an Hg-free UV source, have been actively studied. However, no studies have been conducted applying this technique to control A. acidoterrestris spores. Therefore, the results of this study, which applied a KrCl excilamp for the control of A. acidoterrestris spores and elucidated the inactivation principle, are expected to be utilized as important basic data for application to actual industry or conducting further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.