The stability of different shapes of cuprous oxides was tested in deionized water with or without light irradiation. The morphology was degraded by the formation of CuO at the surface differently with each shape. TiIrOx-coated Cu2O particles presented improved stability for overall water splitting producing hydrogen and oxygen.
Relatively high aspect ratio exfoliated graphite (EFG) particles with an average size of 7.4 µm and a nanometer sized thickness of 30-50 nm were successfully prepared by thermal treatment at 1050• C and subsequent ultrasonication for application as a filler to improve the physical properties of eco-friendly poly(propylene carbonate) (PPC). A series of poly(propylene carbonate)/exfoliated graphite (PPC/EFG) nanocomposite films with different EFG contents were prepared via a solution blending method. The physical properties were strongly dependent upon the chemical and morphological structures originating from the differences in EFG composition. The morphological structures, thermal properties, mechanical properties and barrier properties of the nanocomposite films were investigated as a function of the EFG content. While all of the PPC/EFG nanocomposite films exhibited good dispersion of EFG to some extent, Fourier transform infrared and SEM results revealed that solution blending did not lead to strong interactions between PPC and EFG. As a result, poor dispersion occurred in composite films with a high EFG content. By loading EFG particles, the oxygen permeabilities, moisture permeabilities and water uptake at equilibrium decreased as the EFG content increased. Compared with pure PPC, PPC/EFG nanocomposite films have enhanced molecular ordering. Specifically, the 2% PPC/EFG composite film shows greater molecular ordering than the other composite films, which results in the highest mechanical strength. In future work, the compatibility and dispersion of the PPC matrix polymer and EFG filler particles should be increased by modifying the EFG surface or introducing additives.
A series of polypropylene carbonate (PPC)/ ZnO nanocomposite films with different ZnO contents were prepared via a solution blending method. The morphological structures, thermal properties, oxygen permeability, water sorption, and antibacterial properties of the films were investigated as a function of ZnO concentration. While all of the composite films with less than 5 wt % ZnO exhibited good dispersion of ZnO in the PPC matrix, FTIR and SEM results revealed that solution blending did not lead to a strong interaction between PPC and unmodified ZnO. As such, poor dispersion was induced in the composite films with a high ZnO content. By incorporating inorganic ZnO filler nanoparticles, the diffusion coefficient, water uptake in equilibrium, and oxygen permeability decreased as the content of ZnO increased. The PPC/ZnO nanocomposite films also displayed a good inhibitory effect on the growth of bacteria in the antimicrobial analysis. The enhancement in the physical properties achieved by incorporating ZnO is advantageous in packaging applications, where antimicrobial and environmental-friendly properties, as well as good water and oxygen barrier characteristics are required. Furthermore, UV light below $ 350 nm can be efficiently absorbed by incorporating ZnO nanoparticles into a PPC matrix. ZnO nanoparticles can also improve the weatherability of a PPC film. In future research, the compatibility and dispersion of the PPC matrix polymer and the inorganic ZnO filler nanoparticles should be increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.