Tropical cyclone-generated storm surges are among the world's most deadly and destructive natural hazards. This paper provides the first comprehensive global review of tropical storm surge data sources, observations, and impacts while archiving data in SURGEDAT, a global database. Available literature has provided data for more than 700 surge events since 1880, the majority of which are found in the western North Atlantic (WNA), followed by Australia/Oceania, the western North Pacific (WNP), and the northern Indian Ocean (NIO). The Bay of Bengal (BOB) in the NIO consistently observes the world's highest surges, as this subbasin averages five surges ≥5 m per decade and has observed credible storm tide levels reaching 13.7 m. The WNP observes the highest rate of low-magnitude surges, as the coast of China averages 54 surges ≥1 m per decade, and rates are likely higher in the Philippines. The U.S. Gulf Coast observes the second highest frequency of both high-magnitude (≥5 m) and low-magnitude (≥1 m) surges. The BOB observes the most catastrophic surge impacts, as 59% of global tropical cyclones that have killed at least 5000 people occurred in this basin. The six deadliest cyclones in this region have each killed at least 140,000 people, and two events have killed 300,000. Storm surge impacts transportation, agriculture, and energy sectors in the WNA. Oceania experiences long-term impacts, including contamination of fresh water and loss of food supplies, although the highest surges in this region are lower than most other basins.
This work outlines a dynamic modeling framework to examine the effects of global climate change, and sea level rise (SLR) in particular, on tropical cyclone-driven storm surge inundation. The methodology, applied across the northern Gulf of Mexico, adapts a present day large-domain, high resolution, tide, wind-wave, and hurricane storm surge model to characterize the potential outlook of the coastal landscape under four SLR scenarios for the year 2100. The modifications include shoreline and barrier island morphology, marsh migration, and land use land cover change. Hydrodynamics of 10 historic hurricanes were simulated through each of the five model configurations (present day and four SLR scenarios). Under SLR, the total inundated land area increased by 87% and developed and agricultural lands by 138% and 189%, respectively. Peak surge increased by as much as 1 m above the applied SLR in some areas, and other regions were subject to a reduction in peak surge, with respect to the applied SLR, indicating a nonlinear response. Analysis of time-series water surface elevation suggests the interaction between SLR and storm surge is nonlinear in time; SLR increased the time of inundation and caused an earlier arrival of the peak surge, which cannot be addressed using a static ("bathtub") modeling framework. This work supports the paradigm shift to using a dynamic modeling framework to examine the effects of global climate change on coastal inundation. The outcomes have broad implications and ultimately support a better holistic understanding of the coastal system and aid restoration and long-term coastal sustainability.
Tropical cyclone-generated storm surges are among the most deadly and costly natural disasters to impact the United States. Unfortunately, no comprehensive storm surge dataset provides reliable, historical storm surge information for the United States. This paper introduces SURGEDAT, the first comprehensive surge database for the US Gulf Coast. SURGEDAT identifies the location and height of peak storm surge for 195 surge events since 1880. A total of 62 sources were utilized to construct this dataset, including 28 Federal Government sources, numerous academic publications, and more than 3000 pages of newspaper from 16 daily periodicals. Surge heights in this database range from Hurricane Katrina's 8.47 m surge to 1.22 m surges generated by 20 separate events. Spatial analysis reveals enhanced surge magnitudes and frequencies along the Central and Western Gulf Coast, as well as the Florida Keys, while reduced levels of surge activity were observed along the eastern Florida Panhandle and the West Coast of Florida. The methods utilized to create this database are thoroughly documented, a table provides the comprehensive list of surges, and a map provides the spatial distribution of peak surge events. SURGEDAT will be valuable to coastal stakeholders, including planners and emergency managers, coastal scientists, and the hurricane and storm surge research communities.
This paper investigates relationships between storm surge heights and tropical cyclone wind speeds at 3-h increments preceding landfall. A unique dataset containing hourly tropical cyclone position and wind speed is used in conjunction with a comprehensive storm surge dataset that provides maximum water levels for 189 surge events along the U.S. Gulf Coast from 1880 to 2011. A landfall/surge classification was developed for analyzing the relationship between surge magnitudes and prelandfall winds. Ten of the landfall/surge event types provided useable data, producing 117 wind-surge events that were incorporated into this study. Statistical analysis indicates that storm surge heights correlate better with prelandfall tropical cyclone winds than with wind speeds at landfall. Wind speeds 18 h before landfall correlated best with surge heights. Raising wind speeds to exponential powers produced the best wind-surge fit. Higher wind-surge correlations were found when testing a more recent sample of data that contained 63 wind-surge events since 1960. The highest correlation for these data was found when wind speeds 18 h before landfall were raised to a power of 2.2, which provided R 2 values that approached 0.70. The R 2 values at landfall for these same data were only 0.44. Such results will be useful to storm surge modelers, coastal scientists, and emergency management personnel, especially when tropical cyclones rapidly strengthen or weaken while approaching the coast.
Tropical cyclone–generated storm surges are among the world's most deadly and costly natural disasters. The destructive nature of this hazard was clearly seen last fall, as Hurricane Sandy generated a devastating storm surge along the mid‐Atlantic coast. The storm killed 147 people and caused approximately $50 billion in economic losses [Blake et al., 2012].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.