During starvation, intra-mitochondrial sirtuins, NAD sensitive deacylating enzymes that modulate metabolic homeostasis and survival, directly adjust mitochondrial function to nutrient availability; concomitantly, mitochondria elongate to escape autophagic degradation. However, whether sirtuins also impinge on mitochondrial dynamics is still uncharacterized. Here we show that the mitochondrial Sirtuin 5 (Sirt5) is essential for starvation induced mitochondrial elongation. Deletion of Sirt5 in mouse embryonic fibroblasts increased levels of mitochondrial dynamics of 51kDa protein and mitochondrial fission protein 1, leading to mitochondrial accumulation of the pro-fission dynamin related protein 1 and to mitochondrial fragmentation. During starvation, Sirt5 deletion blunted mitochondrial elongation, resulting in increased mitophagy. Our results indicate that starvation induced mitochondrial elongation and evasion from autophagic degradation requires the energy sensor Sirt5.
Candida albicans is an opportunist pathogen responsible for a large spectrum of infections, from superficial mycosis to systemic diseases called candidiasis. Its ability to grow in various morphological forms, such as unicellular budding yeast, filamentous pseudohyphae and hyphae, contributes to its survival in the diverse microenvironments it encounters in the host. During infection in vivo, C. albicans is faced with high levels of reactive oxygen species (ROS) generated by phagocytes, and the thiol-dependent redox status of the cells reflects their levels of oxidative stress. We investigated the role of glutathione during the transition between the yeast and hyphal forms of the pathogen, in relation to possible changes in mitochondrial bioenergetic pathways. Using various growth media and selective mutations affecting the filamentation process, we showed that C. albicans filamentation was always associated with a depletion of intracellular glutathione levels. Moreover, the induction of hypha formation resulted in general changes in thiol metabolism, including the oxidation of cell surface -SH groups and glutathione excretion. Metabolic adaptation involved tricarboxylic acid (TCA) cycle activation, acceleration of mitochondrial respiration and a redistribution of electron transfer pathways, with an increase in the contribution of the alternative oxidase and rotenone-insensitive dehydrogenase. Changes in redox status and apparent oxidative stress may be necessary to the shift to adaptive metabolic pathways, ensuring normal mitochondrial function and adenosine triphosphate (ATP) levels. The consumption of intracellular glutathione levels during the filamentation process may thus be the price paid by C. albicans for survival in the conditions encountered in the host.
Quinone reductase 2 (QR2, E.C. 1.10.5.1) is an enzyme with a feature that has attracted attention for several decades: in standard conditions, instead of recognizing NAD(P)H as an electron donor, it recognizes putative metabolites of NADH, such as N-methyl-and N-ribosyl-dihydronicotinamide. QR2 has been particularly associated with reactive oxygen species and memory, strongly suggesting a link among QR2 (as a possible key element in pro-oxidation), autophagy, and neurodegeneration. In molecular and cellular pharmacology, understanding physiopathological associations can be difficult because of a lack of specific and powerful tools. Here, we present a thorough description of the potent, nanomolar inhibitor [2-(2-methoxy-5H-1,4b,9-triaza(indeno[2,1-a]inden-10-yl)ethyl]-2-furamide (S29434 or NMDPEF; IC 50 5 5-16 nM) of QR2 at different organizational levels. We provide full detailed syntheses, describe its cocrystallization with and behavior at QR2 on a millisecond timeline, show that it penetrates cell membranes and inhibits QR2-mediated reactive oxygen species (ROS) production within the 100 nM range, and describe its actions in several in vivo models and lack of actions in various ROS-producing systems. The inhibitor is fairly stable in vivo, penetrates cells, specifically inhibits QR2, and shows activities that suggest a key role for this enzyme in different pathologic conditions, including neurodegenerative diseases. E.C.H. and P.P.M. acknowledge the support of the funding programs "Investissements d'avenir" ANR-10-IAIHU-06 and "Investissements d'avenir" ANR-11-INBS-0011-NeurATRIS: Translational Research Infrastructure for Biotherapies in Neurosciences. This work benefited from equipment and services from the CELIS core facility (Institut du Cerveau et de la Moelle Epinière, Paris). Dr. D.A.K. acknowledges support from the Canada Foundation for Innovation and the Natural Sciences and Engineering Research Council of Canada. Dr. E.J. received financial support from Herbal and Antioxidant Derivatives srl, Biano (RC), Italy, and from FFARB 2017 (Basic Research Activities Fund).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.