This study was conducted to investigate the possible role of camels and attached ticks in the epidemiology of Francisella spp. including Francisella tularensis. For this purpose, a total of 319 ticks (248 Hyalomma dromedarii and 71 Amblyomma spp.) as well as 100 blood and 50 fecal samples collected from camels were screened for the presence of Francisella spp. by PCR through amplification of Francisella 16S rRNA gene. Positive samples were then tested for F. tularensis by PCR. In addition, serum samples from 75 camel abattoir workers were examined for the presence of IgG antibodies against F. tularensis using enzyme-linked immunosorbent assay (ELISA). Of the examined ticks, 15 were positive for Francisella spp. with prevalence of 4.7%, all positive results were recorded in Hyalomma dromedarii (6%). Neither blood nor fecal samples from camels yielded Francisella spp. even camels which carried Francisella spp. positive ticks. Moreover, F. tularensis could not be detected among Francisella-positive ticks. Phylogenetic analysis of some Francisella 16S rRNA gene sequences obtained in this study points out that these sequences are closely related to Francisella-like endosymbionts. In contrast, seroprevalence of F. tularensis antibodies among examined abattoir workers was 9.3% with significantly high prevalence among workers frequently exposed to tick bites (20.7%) rather than occasionally exposed workers (2.2%). In conclusion, however, F. tularensis could not be detected in this study; the high seroprevalence among camel abattoir workers especially those frequently exposed to tick bites underlines the possible role of ticks attached to camels in transmission of tularemia to humans.
Methicillin-resistant Staphylococcus aureus (MRSA) is an emerging pathogen causing serious public health threats. This study was conducted to investigate the occurrence of multidrugresistant MRSA among apparently healthy farm animals to shed the light on the potential role of these animals as a reservoir for such pathogen. For this purpose, 195 nasal swabs from apparently healthy farm animals (52 sheep, 51 goats, 47 cattle and 45 buffalo) were screened for multidrug-resistant MRSA. MRSA was isolated using a selective chromogenic medium and identified by colonial characters, Gram's stain films, conventional biochemical tests, coagulase test, resistance to cefoxitin and amplification of nuc and mecA genes. The antimicrobial susceptibility testing profile was performed by disk diffusion method to identify multidrugresistant MRSA. Of 195 samples, 7 yielded MRSA with an overall prevalence 3.6%, whereas the prevalence rates were 3.8%, 3.9%, 4.3% and 2.2% for sheep, goats, cattle and buffalo, respectively. All MRSA isolates were multidrug-resistant strains. The phylogenetic analysis of 2 mecA gene sequences from the obtained isolates revealed that both sequences were clustered in the same clade with those derived from human clinical cases from different countries to highlight the public health burden of such strains. The distribution of multidrug-resistant MRSA among all examined farm animal species being apparently healthy points out that farm animals could represent a potential reservoir for multidrug-resistant MRSA with public health implications.
ARTICLE HISTORY
KEYWORDSMRSA; farm animals; multidrug resistance; public health
Isolation and identification of MRSASamples were enriched overnight in 5 ml tryptone soy broth (TSB) containing 6.5% NaCl before plating on CHROMagar MRSA medium (CHROMagar, France)CONTACT Hala M. Zaher
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.