Medical diagnosis using optical techniques and contrast agents is a promising method where it is safe and unexpansive technique. Every tissue can be distinguished by its optical absorption and scattering properties that are related to many physiological changes and it is a sign for cancerous cells. Characterizing the light propagation in the human tissues is a vital issue in early cancer diagnosis for more effective therapeutic. In this work, the glowing effect of chitosan nanoparticles has been observed. Also, the light propagation in each of colon cancer (Caco-2 cell line) and normal cells (WI-38 cell line) at 650 nm and 808 nm in the absence and in the presence of chitosan nanoparticles was studied to study its effect in differentiate the cancer cells from the normal cells. Chitosan nanoparticles were characterized by the dynamic light scattering and transmission electronic Microscope (TEM). A Monte-Carlo simulation model was applied to obtain spatially resolved steady state diffuse reflectance measurements for each of the examined cells. Furthermore, the optical fluence rate distribution at the tissue surface were used to reconstruct the image using the diffuse equation using the finite element method. Chitosan nanoparticles appeared its glowing effect. The proposed diffuse reflectance curves and fluence rate images show different features regarding for each of Caco-2 cell line and WI-38 cell line that promises to be effective in medical diagnosis.
Chitosan-tripolyphosphate nanoparticles (C-TPP NPs) were synthesized to investigate their cytotoxicity against colon cancer cells (Caco2 cells) in the absence and the presence of a near-infrared (NIR) laser to evaluate their influence in cancer detection using the NIR laser and to evaluate the NIR laser on cancer treatment. The synthesized NPs were characterized by Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), zeta potential (ZP), and transmission electronic microscope (TEM). The cytotoxicity was analyzed by the MTT test and the cell viability was assessed using the Trypan blue method. C-TPP NPs showed increased cytotoxicity and decreased cell viability against Caco2 cells. Upon laser exposure only, the cell viability decreased. The C-TPP NPs appeared to have a shining light on the cancerous cells which were photographed under the inverted microscope.
Early cancer diagnosis through characterizing light propagation and nanotechnology increases the survival rate. The present research is aimed at evaluating the consequence of using natural nanoparticles in cancer therapy and diagnosis. Colon cancer cells were differentiated from the normal cells via investigating light diffusion combined with the fluorescence effect of the Ashwagandha chitosan nanoparticles (Ash C NPs). Ionic gelation technique synthesized the Ash C NPs. High-resolution transmission electron microscope, dynamic light scattering, and zeta potential characterized Ash C NPs. Fourier transform infrared spectroscopy analyzed Ash C NPs, chitosan, and Ashwagandha root water extract. Moreover, the MTT assay evaluated the cytotoxicity of Ash C NPs under the action of near-infrared light (NIR) irradiation. The MTT assay outcomes were statistically analyzed by Bonferroni post hoc multiple two-group comparisons using one-way variance analysis (ANOVA). Based on the Monte-Carlo simulation technique, the spatially resolved steady-state diffusely reflected light from the cancerous and healthy cells is acquired. The diffuse equation reconstructed the optical fluence rate using the finite element technique. The fluorescent effect of the nanoparticles was observed when the cells were irradiated with NIR. The MTT assay revealed a decrease in the cell viability under the action of Ash C NPs with and without laser irradiation. Colon cancer and normal cells were differentiated based on the optical characterization after laser irradiation. The light diffusion equation was successfully resolved for the fluence rate on cells’ surfaces showing different normal and cancer cells values. Ash C NPs appeared its fluorescent effect in the presence of NIR laser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.