Ox insulin (six-times recrystallized) used as a secondary standard for immunoassay of rabbit insulin was given by Boots Pure Drug Co. Ltd. or by Burroughs Wellcome and Co. The "I'l-labelled insulin for immunoassay was either prepared as described by Hales & Randle (1963) or obtained from The Radiochemical Centre, Amersham, Bucks. Ox growth hormone and human growth hormone were prepared in this Laboratory by Mr B. R. Slater from ox or human pituitaries by modifications of the methods of Wilhelmi, Fishman & Russell (1948) (for ox) or of Raben (1957) (for human). Adrenaline was obtained from British Drug Houses Ltd., and adrenochrome prepared from it by the method of Feldstein (1958). L-Thyroxine was obtained from British Drug Houses Ltd., and dexamethasone 21phosphate was given by Merck, Sharp and Dohme Ltd.
1. In epididymal adipose tissue synthesizing fatty acids from fructose in vitro, addition of insulin led to a moderate increase in fructose uptake, to a considerable increase in the flow of fructose carbon atoms to fatty acid, to a decrease in the steady-state concentration of lactate and pyruvate in the medium, and to net uptake of lactate and pyruvate from the medium. It is concluded that insulin accelerates a step in the span pyruvate-->fatty acid. 2. Mitochondria prepared from fat-cells exposed to insulin put out more citrate than non-insulin-treated controls under conditions where the oxaloacetate moiety of citrate was formed from pyruvate by pyruvate carboxylase and under conditions where it was formed from malate. This suggested that insulin treatment of fat-cells led to persistent activation of pyruvate dehydrogenase. 3. Insulin treatment of epididymal fat-pads in vitro increased the activity of pyruvate dehydrogenase measured in extracts of the tissue even in the absence of added substrate; the activities of pyruvate carboxylase, citrate synthase, glutamate dehydrogenase, acetyl-CoA carboxylase, NADP-malate dehydrogenase and NAD-malate dehydrogenase were not changed by insulin. 4. The effect of insulin on pyruvate dehydrogenase activity was inhibited by adrenaline, adrenocorticotrophic hormone and dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate). The effect of insulin was not reproduced by prostaglandin E(1), which like insulin may lower the tissue concentration of cyclic AMP (adenosine 3':5'-cyclic monophosphate) and inhibit lipolysis. 5. Adipose tissue pyruvate dehydrogenase in extracts of mitochondria is almost totally inactivated by incubation with ATP and can then be reactivated by incubation with 10mm-Mg(2+). In this respect its properties are similar to that of pyruvate dehydrogenase from heart and kidney where evidence has been given that inactivation and activation are catalysed by an ATP-dependent kinase and a Mg(2+)-dependent phosphatase. Evidence is given that insulin may act by increasing the proportion of active (dephosphorylated) pyruvate dehydrogenase. 6. Cyclic AMP could not be shown to influence the activity of pyruvate dehydrogenase in mitochondria under various conditions of incubation. 7. These results are discussed in relation to the control of fatty acid synthesis in adipose tissue and the role of cyclic AMP in mediating the effects of insulin on pyruvate dehydrogenase.
1. The ‘initial activity’ of the pyruvate dehydrogenase enzyme complex in whole tissue or mitochondrial extracts of lactating rat mammary glands was greatly decreased by 24 or 48h starvation of the rats. Injection of insulin and glucose into starved rats 60min before removal of the glands abolished this difference in ‘initial activities’. 2. The ‘total activity’ of the enzyme complex in such extracts was revealed by incubation in the presence of free Mg2+ and Ca2+ ions (more than 10 and 0.1mm respectively) and a crude preparation of pig heart pyruvate dehydrogenase phosphatase. Starvation did not alter this ‘total activity’. It is assumed that the decline in ‘initial activity’ of the enzyme complex derived from the glands of starved animals was due to increased phosphorylation of its α-subunit by intrinsic pyruvate dehydrogenase kinase. 3. Starvation led to an increase in intrinsic pyruvate dehydrogenase kinase activity in both whole tissue and mitochondrial extracts. Injection of insulin into starved animals 30min before removal of the lactating mammary glands abolished the increase in pyruvate dehydrogenase kinase activity in whole-tissue extracts. 4. Pyruvate (1mm) prevented ATP-induced inactivation of the enzyme complex in mitochondrial extracts from glands of fed animals. In similar extracts from starved animals pyruvate was ineffective. 5. Starvation led to a decline in activity of pyruvate dehydrogenase phosphatase in mitochondrial extracts, but not in whole-tissue extracts. 6. These changes in activity of the intrinsic kinase and phosphatase of the pyruvate dehydrogenase complex of lactating rat mammary gland are not explicable by current theories of regulation of the complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.