The fractional Fourier transform The fractional Fourier transform is a generalization of the common Fourier transform with an order parameter a. Mathematically, the ath order fractional Fourier transform is the ath power of the fractional Fourier transform operator. The a = 1st order fractional transform is the common Fourier transform. The a = 0th transform is the function itself. With the development of the fractional Fourier transform and related concepts, we see that the common frequency domain is merely a special case of a continuum of fractional domains, and arrive at a richer and more general theory of alternate signal representations, all of which are elegantly related to the notion of space-frequency distributions. Every property and application of the common Fourier transform becomes a special case of that for the fractional transform. In every area in which Fourier transforms and frequency domain concepts are used, there exists the potential for generalization and improvement by using the fractional transform.
Abstract-An algorithm for efficient and accurate computation of the fractional Fourier transform is given. For signals with time-bandwidth product N , the presented algorithm computes the fractional transform in O( N log N ) time. A definition for the discrete fractional Fourier transform that emerges from our analysis is also discussed.
Cataloged from PDF version of article.Fourier transforms of fractional order a are defined in a manner such that the common Fourier transform is a special case with order a = 1. An optical interpretation is provided in terms of quadratic graded index media and discussed from both wave and ray viewpoints. Several mathematical properties are derived
A concise introduction to the concept of fractional Fourier transforms is followed by a discussion of their relation to chirp and wavelet transforms. The notion of fractional Fourier domains is developed in conjunction with the Wigner distribution of a signal. Convolution, filtering, and multiplexing of signals in fractional domains are discussed, revealing that under certain conditions one can improve on the special cases of these operations in the conventional space and frequency domains. Because of the ease of performing the fractional Fourier transform optically, these operations are relevant for optical information processing.
Abstract-We propose and consolidate a definition of the discrete fractional Fourier transform that generalizes the discrete Fourier transform (DFT) in the same sense that the continuous fractional Fourier transform generalizes the continuous ordinary Fourier transform. This definition is based on a particular set of eigenvectors of the DFT matrix, which constitutes the discrete counterpart of the set of Hermite-Gaussian functions. The definition is exactly unitary, index additive, and reduces to the DFT for unit order. The fact that this definition satisfies all the desirable properties expected of the discrete fractional Fourier transform supports our confidence that it will be accepted as the definitive definition of this transform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.