Shannon entropy, also known as information entropy or entropy, measures the uncertainty or randomness of probability distribution. Entropy is measured in bits, quantifying the average amount of information required to identify an event from the distribution. Shannon’s entropy theory initiates graph entropies and develops information-theoretic magnitudes for structural computational evidence of organic graphs and complex networks. Graph entropy measurements are valuable in several scientific fields, such as computing, chemistry, biology, and discrete mathematics. In this study, we investigate the entropy of fractal-type networks by considering cycle, complete, and star networks as base graphs using degree-based topological indices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.