This study investigates the effect of hybridization on tensile strength of woven fabric glass/epoxy composite laminates with two different notch sizes of 5 mm and 10 mm. Tensile tests are performed on notched [0 /90 ] 3s specimens of woven fabric C-glass/ epoxy composite laminates and their hybrid reinforced with woven fabric 3K-carbon layers in order to measure tensile strength and characterize damage mechanisms. The results suggest that hybridization has a considerable effect on the improvement of the tensile strength of C-glass/epoxy composite laminates but also has reduced the rupture strain of the composites. Microscopic observation of specimens after tensile loading reveals the existence of transverse and longitudinal cracks, delamination and transverse fiber damage in hybrid composite laminates.
Hybrid laminates consisting of C-glass woven fabric/epoxy composite plies and 3k-carbon woven fabric/epoxy composite plies are studied for fatigue damage and residual strength. Tension-tension fatigue tests were conducted on notched composite laminates at two load ratios of 0.1 and 0.25. The laminates were fabricated with the hand lay-up process for a symmetrical stacking sequence [0/90] 3s made of three 3k-carbon/epoxy composite plies at both top and bottom sections and six C-glass/ epoxy composite plies in the middle. Fatigue damage was generated on notched specimens with 4 Â 10 4 load cycles to damage for residual strength tests. The hybridization was found to be beneficial for relative damage sensitivity under one of four different fatigue conditions although its effect was marginal while three other conditions were not in favor. A relative damage sensitivity factor expression (or a criterion) was developed for quantitative comparisons between non-hybrid and hybrid composites and was theoretically demonstrated to be valid for any possible cases where various combinations are possible due to differences in strength reduction rate between two different composite systems. A theoretical framework with the relative damage sensitivity factor is proposed as a guide to deal with the complexity involving uncertainties and a large number of variables in the hybrid composite system. New damage mechanisms of the hybrid system due to dissimilarity between two sub-composite systems (i.e. glass/epoxy and carbon/epoxy) were hypothesized and tested to be valid with evidence based on
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.