Potential improvement of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) solid-wood properties was examined by estimating age trends of inheritance, age–age genetic correlations, and the efficiency of early selection using 823 increment cores sampled from 207 half-sib families at two independent progeny trials, aged 34–35 years, located in northern Sweden. High-resolution radial variation of annual ring width, wood density, microfibril angle (MFA), and modulus of elasticity (clearwood stiffness; MOES) was measured using SilviScan. The dynamic stiffness (MOEtof) of standing trees was also obtained using Hitman ST300. Heritabilities ranged from 0.10 to 0.64 for growth and earlywood, transition-wood, and latewood proportions, from 0.29 to 0.77 for density traits, and from 0.13 to 0.33 for MFA and stiffness traits. Genetic correlations between early age and the reference age (26 years) suggested that early selection is efficient at age 4 years for MFA and between ages 5 to 8 years for density and MOES. Unfavorable diameter–stiffness genetic correlations and correlated responses indicate that breeding for a 1% increase in diameter would confer 5.5% and 2.3% decreases in lodgepole pine MOES and MOEtof, respectively. Index selection with appropriate economical weights for growth and wood stiffness is highly recommended for selective breeding.
Genetic parameters, performance of provenances, and genotype by environment interaction (G × E) for diameter at breast height (DBH), survival, and modulus of elasticity of time-of-flight (MOE tof) (an indirect measure of stiffness), were investigated in six lodgepole pine progeny trials, aged 33-36 years, within three breeding zones in northern Sweden. Provenances of Yukon origin had the highest growth but lowest stiffness at higher latitude, while those of British Columbia (BC) origin grew faster at lower latitudes and had highest stiffness within zone 5. Combined-site heritability estimates ranged from 0.09 to 0.19 for DBH, from 0.19 to 0.27 for MOE tof , and from 0.13 to 0.26 for survival. Type-B genetic correlations (r b) were generally high for all studied traits, except for DBH and survival in zone 4 (r b = 0.74 and 0.40, respectively) and for MOE tof in zone 2 (r b = 0.46). On the basis of the results obtained in this study, G × E for stiffness in northern Sweden and unfavourable growth-stiffness genetic correlation should be considered in selective breeding programmes of lodgepole pine. To achieve the highest stiffness for lodgepole pine, provenances of Yukon origin should be planted at lower latitudes and those of BC origin should be planted at lower elevations within the tested breeding zones.
Genetic control of microfibril angle (MFA) transition from juvenile wood to mature wood was evaluated in Norway spruce (Picea abies (L.) Karst) and lodgepole pine (Pinus contorta Douglas ex Loudon). Increment cores were collected at breast height (1.3 m) from 5664 trees in two 21-year-old Norway spruce progeny trials in southern Sweden and from 823 trees in two lodgepole pine progeny trials, aged 34–35 years, in northern Sweden. Radial variations in MFA from pith to bark were measured for each core using SilviScan. To estimate MFA transition from juvenile wood to mature wood, a threshold level of MFA 20° was considered, and six different regression functions were fitted to the MFA profile of each tree after exclusion of outliers, following three steps. The narrow-sense heritability estimates (h2) obtained for MFA transition were highest based on the slope function, ranging from 0.21 to 0.23 for Norway spruce and from 0.34 to 0.53 for lodgepole pine, while h2 were mostly non-significant based on the logistic function, under all exclusion methods. Results of this study indicate that it is possible to select for an earlier MFA transition from juvenile wood to mature wood in Norway spruce and lodgepole pine selective breeding programs, as the genetic gains (ΔG) obtained in direct selection of this trait were very high in both species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.