This study investigated the effect of polyethylene glycol (PEG) and nanosilica (NS) on the physical-mechanical properties and cure kinetics of diglycidyl ether of bisphenol-A-based epoxy (DGEBA-based EP) resin. For this purpose, tensile and viscometry tests, dynamic mechanical thermal analysis (DMTA), and differential scanning calorimetry (DSC) were carried out under dynamic conditions. The results showed that adding NS and PEG enhances the maximum cure temperature as well as the heat of cure reaction (ΔH) in EP-NS, while it decreases in EP-PEG and EP-PEG-NS. The cure kinetic parameters of EP-PEG-NS were calculated by Kissinger, Ozawa, and KSA methods and compared with each other. The Ea calculated from the Kissinger method (96.82 kJ/mol) was found to be lower than that of the Ozawa method (98.69 kJ/mol). Also, according to the KAS method, the apparent Ea was approximately constant within the 10-90% conversion range. Tensile strength and modulus increased by adding NS, while tensile strength diminished slightly by adding PEG to EP-NS. The glass transition temperature (Tg) was calculated using DMTA which was increased and decreased by the addition of NS and PEG, respectively. The results of the viscometry test showed that the viscosity increased with the presence of both PEG and NS and it prevented the deposition of solid particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.