Kelch-like ECH-associated protein 1 (Keap1) is an inhibitor of nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor for cytoprotective gene activation in the oxidative stress response. Under unstressed conditions, Keap1 interacts with Nrf2 in the cytoplasm via its Kelch domain and suppresses the transcriptional activity of Nrf2. During oxidative stress, Nrf2 is released from Keap1 and is translocated into the nucleus, where it interacts with the small Maf protein to initiate gene transcription. Prothymosin α (ProTα), an intrinsically disordered protein, also interacts with the Kelch domain of Keap1 and mediates the import of Keap1 into the nucleus to inhibit Nrf2 activity. To gain a molecular basis understanding of the oxidative stress response mechanism, we have characterized the interaction between ProTα and the Kelch domain of Keap1 by using nuclear magnetic resonance spectroscopy, isothermal titration calorimetry, peptide array analysis, site-directed mutagenesis, and molecular dynamic simulations. The results of nuclear magnetic resonance chemical shift mapping, amide hydrogen exchange, and spin relaxation measurements revealed that ProTα retains a high level of flexibility, even in the bound state with Kelch. This finding is in agreement with the observations from the molecular dynamic simulations of the ProTα-Kelch complex. Mutational analysis of ProTα, guided by peptide array data and isothermal titration calorimetry, further pinpointed that the region (38)NANEENGE(45) of ProTα is crucial for the interaction with the Kelch domain, while the flanking residues play relatively minor roles in the affinity of binding.
Kelch-like ECH-associated protein 1 (Keap1) plays an important regulatory role in the nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent oxidative stress response pathway. It functions as a repressor of Nrf2, a key transcription factor that initiates the expression of cytoprotective enzymes during oxidative stress to protect cells from damage caused by reactive oxygen species. Recent studies show that mutations of Keap1 can lead to aberrant activation of the antioxidant pathway, which is associated with different types of cancers. To gain a mechanistic understanding of the links between Keap1 mutations and cancer pathogenesis, we have investigated the molecular effects of a series of mutations (G333C, G350S, G364C, G379D, R413L, R415G, A427V, G430C and G476R) on the structural and target recognition properties of Keap1 by using nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD) and isothermal titration calorimetry (ITC). Depending on their locations in the protein, these mutations are found to exert differential effects on the protein stability and target binding. Together with the proposed hinge-and-latch mechanism of Nrf2–Keap1 binding in the literature, our results provide important insight into the molecular affect of different somatic mutations on Keap1’s function as an Nrf2 repressor.
Laryngeal squamous cell carcinoma (LSCC) from different subsites have distinct presentations and prognosis. In this study, we carried out a multiomic comparison of LSCC subsites. The Cancer Genome Atlas (TCGA) LSCC cohort was analyzed in the R statistical environment for differences between supraglottic and glottic cancers in single nucleotide variations (SNVs), copy number alterations (CNAs), mRNA abundance, protein abundance, pathway overrepresentation, tumor microenvironment (TME), hypoxia status, and patient outcome. Supraglottic cancers had significantly higher overall and smoking-associated SNV mutational load. Pathway analysis revealed upregulation of muscle related pathways in glottic cancer and neural pathways in supraglottic cancer. Proteins involved in cancer relevant signaling pathways including PI3K/Akt/mTOR, the cell cycle, and PDL1 were differentially abundant between subsites. Glottic and supraglottic tumors have different molecular profiles, which may partially account for differences in presentation and response to therapy.
Loss of the 3p chromosome arm has previously been reported to be a biomarker of poorer outcome in both human papillomavirus (HPV)-positive and HPV-negative head and neck cancer. However, the precise operational measurement of 3p arm loss is unclear and the mutational profile associated with the event has not been thoroughly characterized. We downloaded the clinical, single nucleotide variation (SNV), copy number aberration (CNA), RNA sequencing, and reverse phase protein assay (RPPA) data from The Cancer Genome Atlas (TCGA) and The Cancer Proteome Atlas HNSCC cohorts. Survival data and hypoxia scores were downloaded from published studies. In addition, we report the inclusion of an independent Memorial Sloan Kettering cohort. We assessed the frequency of loci deletions across the 3p arm separately in HPV-positive and -negative disease. We found that deletions on chromosome 3p were almost exclusively an all or none event in the HPV-negative cohort; patients either had <1% or >97% of the arm deleted. 3p arm loss, defined as >97% deletion in HPV-positive patients and >50% in HPV-negative patients, had no impact on survival (p > 0.05). However, HPV-negative tumors with 3p arm loss presented at a higher N-category and overall stage and developed more distant metastases (p < 0.05). They were enriched for SNVs in TP53, and depleted for point mutations in CASP8, HRAS, HLA-A, HUWE1, HLA-B, and COL22A1 (false discovery rate, FDR < 0.05). 3p arm loss was associated with CNAs across the whole genome (FDR < 0.1), and pathway analysis revealed low lymphoid–non-lymphoid cell interactions and cytokine signaling (FDR < 0.1). In the tumor microenvironment, 3p arm lost tumors had low immune cell infiltration (FDR < 0.1) and elevated hypoxia (FDR < 0.1). 3p arm lost tumors had lower abundance of proteins phospho-HER3 and ANXA1, and higher abundance of miRNAs hsa-miR-548k and hsa-miR-421, which were all associated with survival. There were no molecular differences by 3p arm status in HPV-positive patients, at least at our statistical power level. 3p arm loss is largely an all or none phenomenon in HPV-negative disease and does not predict poorer survival from the time of diagnosis in TCGA cohort. However, it produces tumors with distinct molecular characteristics and may represent a clinically useful biomarker to guide treatment decisions for HPV-negative patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.