Highlights d Pyruvate kinase (PK) is a highly compartmentalized b cell fuel sensor d Membrane-associated PK closes K ATP channels and controls calcium influx d By lowering ADP, PK toggles mitochondria between OxPhos and PEP biosynthesis d PK activation increases oscillatory frequency and amplifies insulin secretion
Pancreatic β-cells couple nutrient metabolism with appropriate insulin secretion. Here, we show that pyruvate kinase (PK), which converts ADP and phosphoenolpyruvate (PEP) into ATP and pyruvate, underlies β-cell sensing of both glycolytic and mitochondrial fuels. Plasma membranelocalized PK is sufficient to close K ATP channels and initiate calcium influx. Small-molecule PK activators increase the frequency of ATP/ADP and calcium oscillations and potently amplify insulin secretion. PK restricts respiration by cyclically depriving mitochondria of ADP, which accelerates PEP cycling until membrane depolarization restores ADP and oxidative phosphorylation. Our findings support a compartmentalized model of β-cell metabolism in which
The noninvasive measurement of functional β-cell mass would be clinically valuable for monitoring the progression of type 1 and type 2 diabetes as well as the viability of transplanted insulin-producing cells. Although previous work using MRI has shown promise for functional β-cell mass determination through voltage-dependent Ca2+ channel (VDCC)–mediated internalization of Mn2+, the clinical utility of this technique is limited by the cytotoxic levels of the Mn2+ contrast agent. Here, we show that positron emission tomography (PET) is advantageous for determining functional β-cell mass using 52Mn2+ (t1/2: 5.6 days). We investigated the whole-body distribution of 52Mn2+ in healthy adult mice by dynamic and static PET imaging. Pancreatic VDCC uptake of 52Mn2+ was successfully manipulated pharmacologically in vitro and in vivo using glucose, nifedipine (VDCC blocker), the sulfonylureas tolbutamide and glibenclamide (KATP channel blockers), and diazoxide (KATP channel opener). In a mouse model of streptozotocin-induced type 1 diabetes, 52Mn2+ uptake in the pancreas was distinguished from healthy controls in parallel with classic histological quantification of β-cell mass from pancreatic sections. 52Mn2+-PET also reported the expected increase in functional β-cell mass in the ob/ob model of pretype 2 diabetes, a result corroborated by histological β-cell mass measurements and live-cell imaging of β-cell Ca2+ oscillations. These results indicate that 52Mn2+-PET is a sensitive new tool for the noninvasive assessment of functional β-cell mass.
Pyruvate kinase (PK) and the phosphoenolpyruvate (PEP) cycle play key roles in nutrient-stimulated KATP channel closure and insulin secretion. To identify the PK isoforms involved, we generated mice lacking β-cell PKm1, PKm2, and mitochondrial PEP carboxykinase (PCK2) that generates mitochondrial PEP. Glucose metabolism generates both glycolytic and mitochondrially-derived PEP, which triggers KATP closure through local PKm1 and PKm2 signaling at the plasma membrane. Amino acids, which generate mitochondrial PEP without producing glycolytic fructose 1,6-bisphosphate to allosterically activate PKm2, signal through PKm1 to raise ATP/ADP, close KATP channels, and stimulate insulin secretion. Raising cytosolic ATP/ADP with amino acids is insufficient to close KATP channels in the absence of PK activity or PCK2, indicating that KATP channels are primarily regulated by PEP that provides ATP via plasma membrane-associated PK, rather than mitochondrially-derived ATP. Following membrane depolarization, the PEP cycle is also involved in an 'off-switch' that facilitates KATP channel reopening and Ca2+ extrusion, as shown by PK activation experiments and β-cell PCK2 deletion, which prolongs Ca2+ oscillations and increases insulin secretion. In conclusion, the differential response of PKm1 and PKm2 to the glycolytic and mitochondrial sources of PEP influences the β-cell nutrient response, and controls the oscillatory cycle regulating insulin secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.