Trauma-induced hemorrhage is a leading cause of disability and death due, in part, to impaired perfusion and oxygenation of the brain. It is unknown if cerebrovascular responses to blood loss are differentiated based on sex. We hypothesized that compared to males, females would have reduced tolerance to simulated hemorrhage induced by maximal lower body negative pressure (LBNP), and this would be associated with an earlier reduction in cerebral blood flow and cerebral oxygenation. Methods: Healthy young males (n=29, 26±4 y) and females (n=23, 27±5 y) completed a step-wise LBNP protocol to presyncope. Mean arterial pressure (MAP), stroke volume (SV), middle cerebral artery velocity (MCAv), end-tidal CO2 (etCO2), and cerebral oxygen saturation (ScO2) were measured continuously. Results: Unexpectedly, tolerance to LBNP was similar between the sexes (males, 1604±68 s vs. females, 1453±78 s; P=0.15). Accordingly, decreases (%Δ) in MAP, SV, MCAv, and ScO2 were similar between males and females throughout LBNP and at presyncope (P≥0.20). Interestingly, while decreases in etCO2 were similar between the sexes throughout LBNP (P=0.16), at presyncope, the %Δ etCO2 from baseline was greater in males compared to females (-30.8±2.6% vs. -21.3±3.0%; P=0.02). Conclusion: Contrary to our hypothesis, sex does not influence tolerance, or the central or cerebral hemodynamic responses to simulated hemorrhage. However, the etCO2 responses at presyncope do suggest potential sex differences in cerebral vascular sensitivity to CO2 during central hypovolemia.
Introduction. Oscillatory patterns in arterial pressure and blood flow (at ∼0.1 Hz) may protect tissue oxygenation during conditions of reduced cerebral perfusion and/or hypoxia. We hypothesized that inducing oscillations in arterial pressure and cerebral blood flow at 0.1 Hz would protect cerebral blood flow and cerebral tissue oxygen saturation during exposure to a combination of simulated hemorrhage and sustained hypobaric hypoxia. Methods. Eight healthy human subjects (4 male, 4 female; 30.1 ± 7.6 year) participated in two experiments at high altitude (White Mountain, California, USA; altitude, 3800 m) following rapid ascent and 5–7 d of acclimatization: (1) static lower body negative pressure (LBNP, control condition) was used to induce central hypovolemia by reducing chamber pressure to −60 mmHg for 10 min (0 Hz), and; (2) oscillatory LBNP where chamber pressure was reduced to −60 mmHg, then oscillated every 5 s between −30 mmHg and −90 mmHg for 10 min (0.1 Hz). Measurements included arterial pressure, internal carotid artery (ICA) blood flow, middle cerebral artery velocity (MCAv), and cerebral tissue oxygen saturation (ScO2). Results. Forced 0.1 Hz oscillations in mean arterial pressure and mean MCAv were accompanied by a protection of ScO2 (0.1 Hz: −0.67% ± 1.0%; 0 Hz: −4.07% ± 2.0%; P = 0.01). However, the 0.1 Hz profile did not protect against reductions in ICA blood flow (0.1 Hz: −32.5% ± 4.5%; 0 Hz: −19.9% ± 8.9%; P = 0.24) or mean MCAv (0.1 Hz: −18.5% ± 3.4%; 0 Hz: −15.3% ± 5.4%; P = 0.16). Conclusions. Induced oscillatory arterial pressure and cerebral blood flow led to protection of ScO2 during combined simulated hemorrhage and sustained hypoxia. This protection was not associated with the preservation of cerebral blood flow suggesting preservation of ScO2 may be due to mechanisms occurring within the microvasculature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.