Federated learning suffers in the case of "non-iid" local datasets, i.e., when the distributions of the clients' data are heterogeneous. One promising approach to this challenge is the recently proposed method FedAUX, an augmentation of federated distillation with robust results on even highly heterogeneous client data. FedAUX is a partially ( , δ)-differentially private method, insofar as the clients' private data is protected in only part of the training it takes part in. This work contributes a fully differentially private extension, termed FedAUXfdp. In experiments with deep networks on large-scale image datasets, FedAUXfdp with strong differential privacy guarantees performs significantly better than other equally privatized SOTA baselines on noniid client data in just a single communication round. Full privatization results in a negligible reduction in accuracy at all levels of data heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.