Ultra-high molecular weight polyethylene (UHMWPE) is one of the most prominent high-performance thermoplastics for biomedical, leisure, and coating applications. Large-scale recycling of UHMWPE is extremely difficult due to the high melt viscosity of the material as well as its exceptional chemical resistance and impact strength. There is a need for a commercially scalable methodology that can process the waste feedstock for mechanical recycling while sustaining the outstanding physical properties of the material. Solid-state shear pulverization (SSSP) is a continuous, twin-screw extruder-based processing technique in which the low-temperature application of shear and compressive forces impart changes in structure at different length scales to overcome the challenges of difficult-torecycle polymers. This paper investigates the use of SSSP in mechanically recycling post-industrial scrap UHMWPE (rUHMWPE) material from a local ski and snowboard manufacturer. The SSSP-processed particles are flat, micron-scale flakes with enhanced surface area, which can sinter very quickly when compression molded. The molded rUHMWPE samples in turn exhibit enhanced ductility and toughness compared to the as-received scrap material, based on the tunable mechanochemical modification of the ethylene chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.