Graphene oxide (GO) material was synthesized by an improved Hummers method and characterized by FT-IR, XPS, XRD, AFM, SEM, and UV-VIS analyses. The thickness of the GO layer was measured as 1.5 nm. Solution processed bulk heterojunction solar cells comprising poly(3-hexylthiophene) (P3HT) as the electron donor and N,N'-bis-2-(1-hydoxyhexyl)-3,4,9,10-perylenebis(dicarboximide) (HHPER) as the electron acceptor component of the active layer were produced with and without the GO doped PEDOT-PSS hole transport layers. The optical investigations of the active layer were performed by ground state absorption and photoluminescence measurements. Optimized blend w/w was determined as P3HT:HHPER, 3:1. It was found that the presence of GO in PEDOT:PSS by 0.05 w/w reduces the charge transfer resistance and enhances not only the Jsc , but also V oc values. However, it cannot inhibit V oc losses obtained through annealing the active layer at temperatures higher than 120• C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.