Root system architecture (RSA) is an important developmental and agronomic trait that is regulated by various physical factors such as nutrients, water, microbes, gravity, and soil compaction as well as hormone-mediated pathways. Phytohormones act as internal mediators between soil and RSA to influence various events of root development, starting from organogenesis to the formation of higher order lateral roots (LRs) through diverse mechanisms. Apart from interaction with the external cues, root development also relies on the complex web of interaction among phytohormones to exhibit synergistic or antagonistic effects to improve crop performance. However, there are considerable gaps in understanding the interaction of these hormonal networks during various aspects of root development. In this review, we elucidate the role of different hormones to modulate a common phenotypic output, such as RSA in Arabidopsis and crop plants, and discuss future perspectives to channel vast information on root development to modulate RSA components.
Besides the long-standing role of cytokinins (CKs) as growth regulators, their current positioning at the interface of development and stress responses is coming into recognition. The current evidence suggests the notion that CKs are involved in heat stress response (HSR), however, the role of CK signaling components is still elusive. In this study, we have identified a role of the CK signaling components type-A Arabidopsis response regulators (ARRs) in HSR in Arabidopsis. The mutants of multiple type-A ARR genes exhibit improved basal and acquired thermotolerance and, altered response to oxidative stress in our physiological analyses. Through proteomics profiling, we show that the type-A arr mutants experience a ‘stress-primed’ state enabling them to respond more efficiently upon exposure to real stress stimuli. A substantial number of proteins that are involved in the heat-acclimatization process such as the proteins related to cellular redox status and heat shock, are already altered in the type-A arr mutants without a prior exposure to stress conditions. The metabolomics analyses further reveal that the mutants accumulate higher amounts of α-and γ-tocopherols, which are important antioxidants for protection against oxidative damage. Collectively, our results suggest that the type-A ARRs play an important role in heat stress response by affecting the redox homeostasis in Arabidopsis.
The current study on putative rice annexin OsAnn5 was tried to know its functional role in the abiotic stress tolerance. For this an in silico analysis of its protein sequence and upstream region was carried out. This results in identification of several probable potential sites for posttranslational modifications and cis-elements respectively. We have studied the effect of OsAnn5 in the amelioration of abiotic stress tolerance through heterologous expression in transgenic tobacco and E.coli. It is observed that OsAnn5 over expression leads to enhanced tolerance to abiotic stress through efficient scavenging of the ROS and balanced expression of SOD and CAT antioxidant enzymes in both the systems, under stress treatments. Fluorescent signal for transiently expressed EGFP:OsANN5 fusion protein was localized in the peripheral region of the onion epidermal cells under salt stress treatment. Expression analysis of OsAnn5 under ABA synthesis inhibitor, fluridone and salinity stress revealed that OsAnn5 appears to act through an ABA-independent pathway under salt stress and in support to this 35S:OsAnn5 transgenics seedlings exhibited less sensitivity to externally applied ABA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.