Staphylococcus aureus possesses 16 two-component systems (TCSs), two of which (GraRS and NsaRS) belong to the intramembrane-sensing histidine kinase (IM-HK) family, which is conserved within the firmicutes. NsaRS has recently been documented as being important for nisin resistance in S. aureus. In this study, we present a characterization of NsaRS and reveal that, as with other IM-HK TCSs, it responds to disruptions in the cell envelope. Analysis using a lacZ reporter-gene fusion demonstrated that nsaRS expression is upregulated by a variety of cell-envelope-damaging antibiotics, including phosphomycin, ampicillin, nisin, gramicidin, carbonyl cyanide m-chlorophenylhydrazone and penicillin G. Additionally, we reveal that NsaRS regulates a downstream transporter NsaAB during nisin-induced stress. NsaS mutants also display a 200-fold decreased ability to develop resistance to the cell-wall-targeting antibiotic bacitracin. Microarray analysis reveals that the transcription of 245 genes is altered in an nsaS mutant, with the vast majority being downregulated. Included within this list are genes involved in transport, drug resistance, cell envelope synthesis, transcriptional regulation, amino acid metabolism and virulence. Using inductively coupled plasma-MS we observed a decrease in intracellular divalent metal ions in an nsaS mutant when grown under low abundance conditions. Characterization of cells using electron microscopy reveals that nsaS mutants have alterations in cell envelope structure. Finally, a variety of virulence-related phenotypes are impaired in nsaS mutants, including biofilm formation, resistance to killing by human macrophages and survival in whole human blood. Thus, NsaRS is important in sensing cell damage in S. aureus and functions to reprogram gene expression to modify cell envelope architecture, facilitating adaptation and survival.
S. aureus is a highly successful pathogen that is speculated to be the most common cause of human disease. The progression of disease in S. aureus is subject to multi-factorial regulation, in response to the environments encountered during growth. This adaptive nature is thought to be central to pathogenesis, and is the result of multiple regulatory mechanisms employed in gene regulation. In this work we describe the existence of a novel S. aureus regulator, an as yet uncharacterized ECF-sigma factor (σS), that appears to be an important component of the stress and pathogenic responses of this organism. Using biochemical approaches we have shown that σS is able to associates with core-RNAP, and initiate transcription from its own coding region. Using a mutant strain we determined that σS is important for S. aureus survival during starvation, extended exposure to elevated growth temperatures, and Triton X-100 induced lysis. Coculture studies reveal that a σS mutant is significantly outcompeted by its parental strain, which is only exacerbated during prolonged growth (7 days), or in the presence of stressor compounds. Interestingly, transcriptional analysis determined that under standard conditions, S. aureus SH1000 does not initiate expression of sigS. Assays performed hourly for 72h revealed expression in typically background ranges. Analysis of a potential anti-sigma factor, encoded downstream of sigS, revealed it to have no obvious role in the upregulation of sigS expression. Using a murine model of septic arthritis, sigS-mutant infected animals lost significantly less weight, developed septic arthritis at significantly lower levels, and had increased survival rates. Studies of mounted immune responses reveal that sigS-mutant infected animals had significantly lower levels of IL-6, indicating only a weak immunological response. Finally, strains of S. aureus lacking sigS were far less able to undergo systemic dissemination, as determined by bacterial loads in the kidneys of infected animals. These results establish that σS is an important component in S. aureus fitness, and in its adaptation to stress. Additionally it appears to have a significant role in its pathogenic nature, and likely represents a key component in the S. aureus regulatory network.
Type III secretion systems (T3SS) are essential for virulence in dozens of pathogens, but are not required for growth outside the host. Therefore, the T3SS of many bacterial species are under tight regulatory control. To increase our understanding of the molecular mechanisms behind T3SS regulation, we performed a transposon screen to identify genes important for T3SS function in the food-borne pathogen Yersinia pseudotuberculosis. We identified two unique transposon insertions in YPTB2860, a gene that displays 79% identity with the E. coli iron-sulfur cluster regulator, IscR. A Y. pseudotuberculosis iscR in-frame deletion mutant (ΔiscR) was deficient in secretion of Ysc T3SS effector proteins and in targeting macrophages through the T3SS. To determine the mechanism behind IscR control of the Ysc T3SS, we carried out transcriptome and bioinformatic analysis to identify Y. pseudotuberculosis genes regulated by IscR. We discovered a putative IscR binding motif upstream of the Y. pseudotuberculosis yscW-lcrF operon. As LcrF controls transcription of a number of critical T3SS genes in Yersinia, we hypothesized that Yersinia IscR may control the Ysc T3SS through LcrF. Indeed, purified IscR bound to the identified yscW-lcrF promoter motif and mRNA levels of lcrF and 24 other T3SS genes were reduced in Y. pseudotuberculosis in the absence of IscR. Importantly, mice orally infected with the Y. pseudotuberculosis ΔiscR mutant displayed decreased bacterial burden in Peyer's patches, mesenteric lymph nodes, spleens, and livers, indicating an essential role for IscR in Y. pseudotuberculosis virulence. This study presents the first characterization of Yersinia IscR and provides evidence that IscR is critical for virulence and type III secretion through direct regulation of the T3SS master regulator, LcrF.
Previously we identified a novel component of the Staphylococcus aureus regulatory network, an extracytoplasmic function -factor, S , involved in stress response and disease causation. Here we present additional characterization of S , demonstrating a role for it in protection against DNA damage, cell wall disruption, and interaction with components of the innate immune system. Promoter mapping reveals the existence of three unique sigS start sites, one of which appears to be subject to autoregulation. Transcriptional profiling revealed that sigS expression remains low in a number of S. aureus wild types but is upregulated in the highly mutated strain RN4220. Further analysis demonstrates that sigS expression is inducible upon exposure to a variety of chemical stressors that elicit DNA damage, including methyl methanesulfonate and ciprofloxacin, as well as those that disrupt cell wall stability, such as ampicillin and oxacillin. Significantly, expression of sigS is highly induced during growth in serum and upon phagocytosis by RAW 264.7 murine macrophage-like cells. Phenotypically, S mutants display sensitivity to a broad range of DNA-damaging agents and cell wall-targeting antibiotics. Furthermore, the survivability of S mutants is strongly impacted during challenge by components of the innate immune system. Collectively, our data suggest that S likely serves dual functions within the S. aureus cell, protecting against both cytoplasmic and extracytoplasmic stresses. This further argues for its important, and perhaps novel, role in the S. aureus stress and virulence responses. Staphylococcus aureus is an exceedingly virulent and successful pathogen, capable of causing a wide range of infections, from relatively benign skin lesions to life-threatening septicemia. With an overwhelming ability to adapt to its environment, S. aureus has become the most common cause of both hospital-and community-acquired infections and is believed to be the leading cause of death by a single infectious agent in the United States (20, 34). The threat posed by this organism to human health is further heightened by the rapid and continued emergence of multidrug-resistant isolates (1,20,34,43).Many components govern the adaptive nature of S. aureus, including complex regulatory networks, which allow it to respond to constantly changing environments via rapid shifts in gene expression. There are a number of different elements that mediate this fine-tuning, including DNA-binding proteins, two-component systems, regulatory RNAs, and alternative factors (10,11,18,21,22,32,44,50,51). The last class acts by binding to core RNA polymerase and redirecting promoter recognition to coordinate gene expression, bringing about expedient and wide-reaching alterations within the cell.From a classification perspective, factors are divided into five discrete subfamilies, with the essential housekeeping factors ( A or 70 ), which are responsible for the majority of transcription, constituting group 1. The remaining families (groups 2 to 5) contain alterna...
Staphylococcus aureus is a leading human pathogen of both hospital and community-associated diseases worldwide. This organism causes a wealth of infections within the human host as a result of the vast arsenal of toxins encoded within its genome. Previous transcriptomic studies have shown that toxin production in S. aureus can be strongly impacted by the negative regulator CodY. CodY acts by directly, and indirectly (via Agr), repressing toxin production during times of plentiful nutrition. In this study we use iTRAQ based proteomics for the first time to study virulence determinant production in S. aureus, so as to correlate transcriptional observations with actual changes in protein synthesis. Using a codY mutant in the epidemic CA-MRSA clone USA300 we demonstrate that deletion of this transcription factor results in a major upregulation of toxin synthesis in both post-exponential and stationary growth. Specifically, we observe hyper-production of secreted proteases, leukocidins and hemolysins in both growth phases in the USA300 codY mutant. Our findings demonstrate the power of mass spectrometry-based quantitative proteomics for studying toxin production in S. aureus, and the importance of CodY to this central process in disease causation and infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.