It is generally believed that the strength of the polymer-nanoparticle interaction controls the modification of near-interface segmental mobility in polymer nanocomposites (PNCs). However, little is known about the effect of covalent bonding on the segmental dynamics and glass transition of matrix-free polymer-grafted nanoparticles (PGNs), especially when compared to PNCs. In this article, we directly compare the static and dynamic properties of poly(2-vinylpyridine)/silica-based nanocomposites with polymer chains either physically adsorbed (PNCs) or covalently bonded (PGNs) to identical silica nanoparticles (RNP = 12.5 nm) for three different molecular weight (MW) systems. Interestingly, when the MW of the matrix is as low as 6 kg/mol (RNP/Rg = 5.4) or as high as 140 kg/mol (RNP/Rg= 1.13), both small-angle X-ray scattering and broadband dielectric spectroscopy show similar static and dynamic properties for PNCs and PGNs. However, for the intermediate MW of 18 kg/mol (RNP/Rg = 3.16), the difference between physical adsorption and covalent bonding can be clearly identified in the static and dynamic properties of the interfacial layer. We ascribe the differences in the interfacial properties of PNCs and PGNs to changes in chain stretching, as quantified by self-consistent field theory calculations. These results demonstrate that the dynamic suppression at the interface is affected by the chain stretching; that is, it depends on the anisotropy of the segmental conformations, more so than the strength of the interaction, which suggests that the interfacial dynamics can be effectively tuned by the degree of stretching-a parameter accessible from the MW or grafting density.
The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, Tg, has been extensively studied. However, not much is known about the origin of this effect below Tg. In this Letter, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below Tg. We ascribe this phenomenon to a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above Tg.
Polymer nanocomposites (PNCs) are important materials that are widely used in many current technologies and potentially have broader applications in the future due to their excellent property tunability, light weight, and low cost. However, expanding the limits in property enhancement remains a fundamental scientific challenge. Here, we demonstrate that well-dispersed, small (diameter ∼1.8 nm) nanoparticles with attractive interactions lead to unexpectedly large and qualitatively different changes in PNC structural dynamics in comparison to conventional nanocomposites based on particles of diameters ∼10-50 nm. At the same time, the zero-shear viscosity at high temperatures remains comparable to that of the neat polymer, thereby retaining good processability and resolving a major challenge in PNC applications. Our results suggest that the nanoparticle mobility and relatively short lifetimes of nanoparticle-polymer associations open qualitatively different horizons in the tunability of macroscopic properties in nanocomposites with a high potential for the development of advanced functional materials.
While it is known that the properties of polymer nanocomposites are largely dominated by the interfacial layer around nanoparticles, the molecular parameters controlling the interfacial layer structure and dynamics remain unknown. In this work we combine small-angle X-ray scattering, differential scanning calorimetry, and broadband dielectric spectroscopy to analyze the dependence of the interfacial layer thickness, l int , on polymer rigidity defined through the characteristic ratio, C ∞ . This analysis revealed a value of C ∞ ∼ 5−7, beyond which l int increases substantially with C ∞ . Moreover, l int grows upon approaching the glass transition temperature from above, and the rate of this growth seems to correlate with polymer fragility. Most important, our analysis revealed that l int is comparable to the characteristic length scale of dynamic heterogeneities in the studied materials. These results provide new understandings of molecular parameters controlling the interfacial layer and are important not only for the field of polymer nanocomposites but also for the fields of thin polymer films and dynamics of soft matter in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.