Assembling 2D materials such as MXenes into functional 3D aerogels using 3D printing technologies gains attention due to simplicity of fabrication, customized geometry and physical properties, and improved performance. Also, the establishment of straightforward electrode fabrication methods with the aim to hinder the restack and/or aggregation of electrode materials, which limits the performance of the electrode, is of great significant. In this study, unidirectional freeze casting and inkjet‐based 3D printing are combined to fabricate macroscopic porous aerogels with vertically aligned Ti3C2Tx sheets. The fabrication method is developed to easily control the aerogel microstructure and alignment of the MXene sheets. The aerogels show excellent electromechanical performance so that they can withstand almost 50% compression before recovering to the original shape and maintain their electrical conductivities during continuous compression cycles. To enhance the electrochemical performance, an inkjet‐printed MXene current collector layer is added with horizontally aligned MXene sheets. This combines the superior electrical conductivity of the current collector layer with the improved ionic diffusion provided by the porous electrode. The cells fabricated with horizontal MXene sheets alignment as current collector with subsequent vertical MXene sheets alignment layers show the best electrochemical performance with thickness‐independent capacitive behavior.
Human bone demonstrates superior mechanical properties due to its sophisticated hierarchical architecture spanning from the nano/microscopic level to the macroscopic. Bone grafts are in high demand due to the rising number of surgeries because of increasing incidence of orthopedic disorders, non‐union fractures, and injuries in the geriatric population. The bone scaffolds need to provide porous matrix with interconnected porosity for tissue growth as well as sufficient strength to withstand physiological loads, and be compatible with physiological remodeling by osteoclasts/osteoblasts. The‐state‐of‐art additive manufacturing (AM) technologies for bone tissue engineering enable the manipulation of gross geometries, for example, they rely on the gaps between printed materials to create interconnected pores in 3D scaffolds. Herein, the authors firstly print hierarchical and porous hydroxyapatite (HAP) structures with interconnected pores to mimic human bones from microscopic (below 10 µm) to macroscopic (submillimeter to millimeter level) by combining freeze casting and extrusion‐based 3D printing. The compression test of 3D printed scaffold demonstrates superior compressive stress (22 MPa) and strain (4.4%). The human mesenchymal stromal cells (MSCs) tests demonstrate the biocompatibility of printed scaffold.
Aerogels are highly porous structures produced by replacing the liquid solvent of a gel with air without causing a collapse in the solid network. Unlike conventional fabrication methods, additive manufacturing (AM) has been applied to fabricate 3D aerogels with customized geometries specific to their applications, designed pore morphologies, multimaterial structures, etc. To date, three major AM technologies (extrusion, inkjet, and stereolithography) followed by a drying process have been proposed to additively manufacture 3D functional aerogels. 3D-printed aerogels and porous scaffolds showed great promise for a variety of applications, including tissue engineering, electrochemical energy storage, controlled drug delivery, sensing, and soft robotics. In this review, the details of steps included in the AM of aerogels and porous scaffolds are discussed, and a general frame is provided for AM of those. Then, the different postprinting processes are addressed to achieve the porosity (after drying); and mechanical strength, functionality, or both (after postdrying thermal or chemical treatments) are provided. Furthermore, the applications of the 3D-printed aerogels/porous scaffolds made from a variety of materials are also highlighted. The review is concluded with the current challenges and an outlook for the next generation of 3D-printed aerogels and porous scaffolds.
Electrohydrodynamic jet (e‐jet) printing is a high‐resolution printed electronics technique that uses an electric field to generate droplets. It has great application potential with the rapid development of flexible and wearable electronics. Triboelectric nanogenerators (TENG), which can convert mechanical motions into electricity, have found many high‐voltage applications with unique merits of portability, controllability, safety, and cost‐effectiveness. In this work, the application of a TENG is extended to printed electronics by employing it to drive e‐jet printing. A rotary freestanding TENG is applied as the high‐voltage power source for generating stable ink droplet ejection. The TENG‐driven droplet generation and ejection process and printed features with varied operation parameters are investigated. Results reveal that the jetting frequency could be controlled by the TENG's operation frequency, and high‐resolution printing with feature size smaller than nozzle size is achieved using the setup. Notably, TENG as the power source for e‐jet printing supplies a limited amount of current, which leads to better safety for both equipment and personnel compared to conventional high‐voltage power supplies. With the superiority of TENG in the sense of safety and cost, the work presents a promising solution for the next‐generation of high‐resolution printed electronics and broadens the scope of TENG application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.