Prevention of pathogen colonization of medical implants is a major medical and financial issue since infection by microorganisms constitutes one of the most serious complications after surgery or critical care. Immobilization of antimicrobial molecules on biomaterials surfaces is an efficient approach to prevent biofilm formation. To the best of our knowledge, we developed herein the first self-defensive coating against both bacteria and yeasts where the release of the antimicrobial peptide is triggered by enzymatic degradation of the film due to the pathogens themselves. Biocompatible and biodegradable polysaccharide multilayer films based on functionalized hyaluronic acid by cateslytin (CTL), an endogenous host-defensive antimicrobial peptide, and chitosan (HA-CTL-C/CHI) were deposited on a planar surface with the aim of designing both antibacterial and antifungal coating. After 24 h of incubation, HA-CTL-C/CHI films fully inhibit the development of Gram-positive Staphylococcus aureus bacteria and Candida albicans yeasts, which are common and virulent pathogens agents encountered in care-associated diseases. Hyaluronidase, secreted by the pathogens, leads to the film degradation and the antimicrobial action of the peptide. Furthermore, the limited fibroblasts adhesion on HA-CTL-C/CHI films, without cytotoxicity, highlights a medically relevant application to prevent infections on catheters or tracheal tubes where fibrous tissue encapsulation is undesirable.
The in vivo evaluation of human umbilical arteries treated with PSS/PAH multilayers demonstrated a high graft patency after 3 months of implantation. Such modified arteries could constitute a useful option for small vascular replacement.
Rapid differentiation of endothelial progenitor cells (EPCs) into confluent mature endothelial cells is important in tissue engineering for the design of autologous, nonthrombotic, vascular grafts. A new method based on EPC culture on poly(sodium-4- styrene-sulfonate)/poly(allylamine hydrochloride), that is, polyelectrolyte-multilayer-coated substrates, reduces the time from two months to two weeks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.