Recent progress in microfabrication technique allowed the rapid development of neural implants. They are getting categorized as effective tools for clinical practice, especially to treat traumatic and neurodegenerative disorders. Microelectrode arrays already have been used in numerous neural interface devices. Basically, almost all neural implants have been developed based on BCI (Brain Computer Interface) system. When BCI system falls under invasive technique, it is referred as BMI or Brain Machine Interface. BMIs hold promises for neurorehabilitation of motor and sensory function, cognitive state evaluation and treatment of neurological chaos. A directed overview of the field of neural implants is discussed in this article. The aim of this review is to give a brief introduction of neural prosthetics as well as their exciting applications in treating neurological disorders and a deep discussion on their functionality are mentioned. BCI system and their different types, their functionality, their pros and cons, how other neural implants developed, and their present status have been covered. Different possibilities and possible future of deep brain stimulation (DBS), Neuralink, motor and sensory neural prosthetics are further discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.