Fiber and vessel structures located in the cross-section are anatomical features that play an important role in identifying tree species. In order to determine the microscopic anatomical structure of these cell types, each cell must be accurately segmented. In this study, a segmentation method is proposed for wood cell images based on deep convolutional neural networks. The network, which was developed by combining two-stage CNN structures, was trained using the Adam optimization algorithm. For evaluation, the method was compared with SegNet and U-Net architectures, trained with the same dataset. The losses in these models trained were compared using IoU (Intersection over Union), accuracy, and BF-score measurements on the test data. The automatic identification of the cells in the wood images obtained using a microscope will provide a fast, inexpensive, and reliable tool for those working in this field.
Bu çalışmada, yapraklı ve iğne yapraklı ağaçlarda (Abies alba Mill, Tilia platyphyllos Scop., Tilia cordata Mill, Betula alba, Juglans regia L. Walnut, Ulmus scabra Mill) bulunan homojen öz ışınları görüntü işleme metotları kullanılarak belirlenmiştir. Öz ışınları paranşim hücrelerin bir araya gelmesiyle oluşur ve teğet kesitte gözenekli bir yapıya sahiptir. Küçük paranşim hücrelerinden oluştuğu için eşikleme işleminden sonra büyük bölgeler görüntüden çıkarılmıştır. Yükseklik/genişlik oranı fazla olan bölgeler de görüntüden silinmiştir. Morfolojik işlemlerden biri olan kapama işlemi ile paranşim hücreleri birleştirilerek öz ışınları bulunmuştur. Birleşmeyen ve öz ışını olamayan bölgeler silinmiştir. Genişleme ve doldurma işlemi ile öz ışınların son şekli belirlenmiştir. Elde edilen sonuçlar görsel ve istatistiksel olarak verilmiştir. Yapılan analiz sonucunda; en fazla ve en az öz ışını sırasıyla Ulmus scabra Mill. ve Abies alba Mill. de tespit edilmiştir. Belirlenmek istenen yapıya uygun görüntü işleme tekniklerinden faydalanılarak öz ışınları otomatik olarak bulan sistemler, odun anatomisi çalışmalarının kısa sürede ve daha kolay bir şekilde yapılmasını sağlamaktadır.
Rays are an important anatomical feature in tree species identification. They are found in certain proportions in trees, which vary for each tree. In this study, the U-Net model is adopted for the first time to detect wood rays. A dataset is created with images taken from the wood database. The resolution of microscopic wood images in tangential section is 640×400. The input image for training is divided into 32×32 image blocks. Each pixel in the dataset is labeled as belonging to the ray or the background. Then, the dataset is increased by applying scale, rotation, salt-and-pepper noise, circular mean filter, and gauss filter. The U-Net network created for ray segmentation is trained using the Adam optimization algorithm. The experimental results show that the ray segmentation accuracy in testing is 96.3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.