L-kynurenine (L-KYN) serves as a substrate for the synthesis of neurotoxic 3-OH-kynurenine (3-OH-KYN) and neuroprotective kynurenic acid (KYNA). KYNA is able to interact with ionotropic excitatory amino acid receptors that are involved in a variety of neurodegenerative disorders. The purpose of the present study was to investigate the biosynthetic machinery of KYNA in several regions of Alzheimer's disease (AD) brain. The endogenous levels of L-KYN, 3-OH-KYN and KYNA in frontal cortex, caudate nucleus, putamen, hippocampus, and cerebellum of 11 autopsy confirmed cases of AD and 13 age-matched controls were analyzed. Subsequently, the activity of two proteins responsible for the production of KYNA, kynurenine aminotransferases I and II (KAT I and KAT II), was investigated. There was a trend for a decrease of L-KYN and 3-OH-KYN in all examined regions of AD brain, as compared to controls. However, KYNA was increased significantly in the putamen and caudate nucleus of AD, by 192 and 177%, respectively. In other areas of AD brain only a minor increase of KYNA was present. Elevated KYNA in the caudate nucleus and putamen correlated with a significant increase of KAT I activities in both nuclei-157 and 147%, respectively. A minor increase of KAT II was measured only in the caudate nucleus of AD subjects. Kinetic analysis of KAT I and II performed in the caudate nucleus of AD patients revealed a marked increase of Vmax, by 207 and 274% of controls, respectively. Km value for L-KYN using pyruvate as amino acceptor was significantly higher for KAT II (247% of controls). The present data indicate an elevated kynurenine metabolism in AD brain. A marked increase of KYNA in the caudate nucleus and putamen may compensate the hyperactivity of the striato-frontal loop in AD brains. Blockade of NMDA receptors by KYNA may be responsible for impaired memory, learning and cognition in AD patients.
Kynurenic acid (KYNA) is an endogenous metabolite in the kynurenine pathway of tryptophan degradation and is an antagonist at the glycine site of the N-methyl-D-aspartate as well as at the alpha 7 nicotinic cholinergic receptors. In the brain tissue KYNA is synthesised from L-kynurenine by kynurenine aminotransferases (KAT) I and II. A host of immune mediators influence tryptophan degradation. In the present study, the levels of KYNA in cerebrospinal fluid (CSF) and serum in a group of human subjects aged between 25 and 74 years were determined by using a high performance liquid chromatography method. In CSF and serum KAT I and II activities were investigated by radioenzymatic assay, and the levels of β2-microglobulin, a marker for cellular immune activation, were determined by ELISA. The correlations between neurochemical and biological parameters were evaluated. Two subject groups with significantly different ages, i.e. <50 years and >50 years, p < 0.001, showed statistically significantly different CSF KYNA levels, i.e. 2.84 ± 0.16 fmol/µl vs. 4.09 ± 0.14 fmol/µl, p < 0.001, respectively; but this difference was not seen in serum samples. Interestingly, KYNA is synthesised in CSF principally by KAT I and not KAT II, however no relationship was found between enzyme activity and ageing. A positive relationship between CSF KYNA levels and age of subjects indicates a 95% probability of elevated CSF KYNA with ageing (R = 0.6639, p = 0.0001). KYNA levels significantly correlated with IgG and β2-microglobulin levels (R = 0.5244, p = 0.0049; R = 0.4253, p = 0.043, respectively). No correlation was found between other biological parameters in CSF or serum. In summary, a positive relationship between the CSF KYNA level and ageing was found, and the data would suggest age-dependent increase of kynurenine metabolism in the CNS. An enhancement of CSF IgG and β2-microglobulin levels would suggest an activation of the immune system during ageing. Increased KYNA metabolism may be involved in the hypofunction of the glutamatergic and/or nicotinic cholinergic neurotransmission in the ageing CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.