Climate change is one of the critical determinants affecting life cycles and transmission of most infectious agents, including malaria, cholera, dengue fever, hand, foot, and mouth disease (HFMD), and the recent Corona-virus pandemic. HFMD has been associated with a growing number of outbreaks resulting in fatal complications since the late 1990s. The outbreaks may result from a combination of rapid population growth, climate change, socioeconomic changes, and other lifestyle changes. However, the modeling of climate variability and HFMD remains unclear, particularly in statistical theory development. The statistical relationship between HFMD and climate factors has been widely studied using generalized linear and additive modeling. When dealing with time-series data with clustered variables such as HFMD with clustered states, the independence principle of both modeling approaches may be violated. Thus, a Generalized Additive Mixed Model (GAMM) is used to investigate the relationship between HFMD and climate factors in Malaysia. The model is improved by using a first-order autoregressive term and treating all Malaysian states as a random effect. This method is preferred as it allows states to be modeled as random effects and accounts for time series data autocorrelation. The findings indicate that climate variables such as rainfall and wind speed affect HFMD cases in Malaysia. The risk of HFMD increased in the subsequent two weeks with rainfall below 60 mm and decreased with rainfall exceeding 60 mm. Besides, a two-week lag in wind speeds between 2 and 5 m/s reduced HFMD's chances. The results also show that HFMD cases rose in Malaysia during the inter-monsoon and southwest monsoon seasons but fell during the northeast monsoon. The study's outcomes can be used by public health officials and the general public to raise awareness, and thus, implement effective preventive measures.
The deterministic power law logistic model is used to describe density-dependent population growth for cases when ordinary logistic model is found to be insufficient. This paper estimates the parameters of stochastic power law logistic model specifically the Lotka-Volterra model by employing the two-step approach. The Bayesian approach is implemented in the first step of estimating the regression spline parameters. Combining the existing and proposed nonparametric criterion, the structural parameters of SDE are estimated in the second step. Results indicate high percentage of accuracy of the estimated diffusion parameter of Lotka-Volterra model supporting the adequacy of the proposed criterion as an alternative to the classical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.