In vitro models serve as a tool for studies of steatosis. Palmitic and oleic acids can induce steatosis in cultured hepatocytes. The aim of our study was to verify steatogenic and cytotoxic effects of palmitic acid (PA), oleic acid (OA) and their combinations as well as their impact on functional capacity of rat primary hepatocytes. Hepatocytes were exposed to OA or PA (0.125-2 mmol/l) or their combination at ratios of 3:1, 2:1 or 1:1 at the final concentrations of 0.5-1 mmol/l. Both OA and PA caused a dose-dependent increase in triacylglycerol content in hepatocytes. PA was more steatogenic at 0.25 and 0.5 mmol/l while OA at 0.75 and 1 mmol/l. PA exhibited a dose-dependent cytotoxic effect associated with ROS production, present markers of apoptosis and necrosis and a decrease in albumin production.OA induced a damage of the cytoplasmic membrane from 1 mM concentration. Mixture of OA and PA induced lower cytotoxicity with less weakened functional capacity than did PA alone. Extent of steatosis was comparable to that after exposure to OA alone.In conclusion, OA or combination of OA with PA is more suitable for simulation of simple steatosis than PA alone.
Oxidative stress and mitochondrial dysfunction play an important role in the pathogenesis of nonalcoholic fatty liver disease and toxic liver injury. The present study was designed to evaluate the effect of exogenous inducer of oxidative stress (tert-butyl hydroperoxide, tBHP) on nonfatty and steatotic hepatocytes isolated from the liver of rats fed by standard and high-fat diet, respectively. In control steatotic hepatocytes, we found higher generation of ROS, increased lipoperoxidation, an altered redox state of glutathione, and decreased ADP-stimulated respiration using NADH-linked substrates, as compared to intact lean hepatocytes. Fatty hepatocytes exposed to tBHP exert more severe damage, lower reduced glutathione to total glutathione ratio, and higher formation of ROS and production of malondialdehyde and are more susceptible to tBHP-induced decrease in mitochondrial membrane potential. Respiratory control ratio of complex I was significantly reduced by tBHP in both lean and steatotic hepatocytes, but reduction in NADH-dependent state 3 respiration was more severe in fatty cells. In summary, our results collectively indicate that steatotic rat hepatocytes occur under conditions of enhanced oxidative stress and are more sensitive to the exogenous source of oxidative injury. This confirms the hypothesis of steatosis being the first hit sensitizing hepatocytes to further damage.
Epigallocatechin-3-gallate (EGCG) is the main compound of green tea with well-described antioxidant, anti-inflammatory, and tumor-suppressing properties. However, EGCG at high doses was reported to cause liver injury. In this study, we evaluated the effect of EGCG on primary culture of rat hepatocytes and on rat liver mitochondria in permeabilized hepatocytes. The 24-hour incubation with EGCG in concentrations of 10 μmol/L and higher led to signs of cellular injury and to a decrease in hepatocyte functions. The effect of EGCG on the formation of reactive oxygen species (ROS) was biphasic. While low doses of EGCG decreased ROS production, the highest tested dose induced a significant increase in ROS formation. Furthermore, we observed a decline in mitochondrial membrane potential in cells exposed to EGCG when compared to control cells. In permeabilized hepatocytes, EGCG caused damage of the outer mitochondrial membrane and an uncoupling of oxidative phosphorylation. EGCG in concentrations lower than 10 μmol/L was recognized as safe for hepatocytes in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.