Using a public dataset of images of maritime vessels provided by Analytics Vidhya, manual annotations were made on a subsample of images with Roboflow using the ground truth classifications provided by the dataset. YOLOv5, a prominent open source family of object detection models that comes with an out-of-the-box pre-training on the Common Objects in Context (COCO) dataset, was used to train on annotations of subclassifications of maritime vessels. YOLOv5 provides significant results in detecting a boat. The training, validation, and test set of images trained YOLOv5 in the cloud using Google Colab. Three of our five subclasses, namely, cruise ships, ROROs (Roll On Roll Off, typically car carriers), and military ships, have very distinct shapes and features and yielded positive results. Two of our subclasses, namely, the tanker and cargo ship, have similar characteristics when the cargo ship is unloaded and not carrying any cargo containers. This yielded interesting misclassifications that could be improved in future work. Our trained model resulted in the validation metric of mean Average Precision (mAP@.5) of 0.932 across all subclassification of ships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.