In the present study, the possibility of extracting biogenic silica from various European biomass materials was investigated. High-purity biogenic silica (> 90 wt.% SiO 2 ) was obtained from energy crops (miscanthus), agro wastes (wheat straw) and other crop residues (cereal remnant pellets). Three different morphological forms of biogenic silica materials (ash) were obtained by a thermo-chemical treatment of these biomass sources. The wet biomass materials were leached using 5 M sulfuric acid for a defined period of time. After washing and drying the biomass materials, the leached samples were subjected to a heat treatment in a furnace with three sequential temperatures and time stages to determine the minimum combustion temperature of the organic compounds in the biomass materials. The final products were characterized by X-ray diffraction, X-ray fluorescence, carbon content analysis, differential thermal analysis, low temperature nitrogen adsorption, mercury intrusion porosimetry and scanning electron microscopy. The obtained silica materials had a microstructure composed of accessible, interconnected and intra-particle meso-and macropores with sizes ranging from 3 to 1500 nm.
Pre-shaped mesoporous amorphous rice husk ash (RHA) and MCM-41 derived from RHA as a silica source were transformed into MFI-type zeolites using two different structure-directing agents. Tetrapropylammonium hydroxide (TPAOH) was utilized as an alkali source for silica dissolution and structure control during the direct transformation of RHA into zeolite. A monopropylamine (PA)-containing alkaline solution (NaOH) was used for the pseudomorphic transformation of RHA or MCM-41 into zeolite. The hydrothermal conversion of RHA or MCM-41 into MFI-type zeolites was investigated as a function of reaction time at 175 °C. With PA as template, the crystallization took place inside and on the outer surface of RHA or MCM-41 without losing the original shape of the initial silica sources, while TPAOH led to the formation of conventional MFI-type zeolite crystals due to the complete dissolution of RHA. The final products were characterized by X-ray diffraction, nitrogen adsorption, scanning electron microscopy, and optical emission spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.