Crop diseases disrupt the crop's physiological constitution by affecting the crop's natural state. The physical recognition of the symptoms of the various diseases has largely been used to diagnose cassava infections. Every disease has a distinct set of symptoms that can be used to identify it. Early detection through physical identification, however, is quite difficult for a vast crop field. The use of electronic tools for illness identification then becomes necessary to promote early disease detection and control. Convolutional neural networks (CNN) were investigated in this study for the electronic identification and categorization of photographs of cassava leaves. For feature extraction and classification, the study used databases of cassava images and a deep convolutional neural network model. The methodology of this study retrained the models' current weights for visual geometry group (VGG-16), VGG-19, SqueezeNet, and MobileNet. Accuracy, loss, model complexity, and training time were all taken into consideration when evaluating how well the final layer of CNN models performed when trained on the new cassava image datasets.
This paper is set out to evaluate the performance of feature extraction techniques that can determine ethnicity of an individual using fingerprint biometric technique and deep learning approach. Hence, fingerprint images of one thousand and fifty-four (1054) persons of three different ethnic groups (Yoruba, Igbo and Middle-Belt) in Nigeria were captured. Kernel Principal Component Analysis (K-PCA) and Kernel Linear Discriminant Analysis (KLDA) were used independently for feature extraction while Convolutional Neural Network (CNN) was used for supervised learning of the features and classification. The results showed that out of sixty (60) individual fingerprints tested, eight (8) were classified as Yoruba, forty-eight (48) as Igbo and four (4) as Hausa. The Recognition Accuracy for K-PCA was 93.97% and KLDA was 97.26%. For Average Recognition time, K-PCA used 9.98seconds while KLDA used 10.02seconds. The memory space utilized by K-PCA was 94.57KB while KLDA utilized 52.17KB. T-Test paired sample statistics was carried out on the result obtained; the outcome presented reveal that KLDA outperformed the K-PCA technique in terms of Recognition Accuracy. The relationship between the average recognition time () and threshold value () was found to be polynomial of order four (4) with a high correlation coefficient for KPCA and polynomial of order three (3) with a high correlation coefficient for KLDA. In terms of computation time analysis, KLDA is computationally more expensive than KPCA by reason of processing speed.
Originally, manual voting systems are surrounded with issues like results manipulation, errors and long result computation time, ineligible voters, void votes among others. Electronic voting system helped in overcoming the challenges with manual voting system, to engendered other problems of phishing, men in the middle attack alongside voter’s impersonation. By these challenges, the integrity of an election results in a distributed system has become another top concern for e-voting system based on reliability. To achieve an improved voters’ authentication and result validation with excellent user experience, here, a Facial Recognition Electronic Voting System that is power-driven by Blockchain Technology was developed. The entire election engineering activities are decentralised with improved security features to enhance transparency, verifiability, and accountability for each vote count. The self-service voting system was built by smart contract and implemented on the Ethereum network. The obtained reports and evaluations reflected a non-editable and self-sufficiently certifiable system for voting. It also has a competitive edge over fingerprint enabled e-voting system. Aside it’s excellent usability and general acceptance, the developed method discarded to a larger extend, intended fraudulent actions from election activities by eliminating the involvement of a middleman while facilitating privacy, convenience, eligibility and satisfactory voters’ right.
There is paucity of information on the possibility of ethnicity identification through fingerprint biometric characteristics and so, this work is set to combine two soft biometric traits (Gender and Ethnicity) in order to ascertain if individual of different ethnicity and gender bias can be identified through their fingerprint. Live scan mechanism was used in order to minimize human errors and as well speed up the rate of fingerprint acquisition which unequivocally ensure good quality capturing of the fingerprint image. In this work, fingerprints of over a thousand people from three different ethnic groups of both male and female gender in Nigeria were captured and subjected to training, testing and classification using Gabor filter and K-NN respectively. Histogram equalization was used for image enhancement and the system performance was evaluated on the basis of some selected metrics such as Recognition Accuracy, Average Recognition Time, Specificity and Sensitivity. Result of this work indicated over 96% accuracy in predicting person's ethnicity and gender with an average recognition time of less than 2secs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.