Objectives
1) Investigate the use of optical reflectance spectroscopy to differentiate malignant and non-malignant tissues in head and neck lesions; 2) Characterize corresponding oxygen tissue biomarkers that are associated with pathologic diagnosis
Study Design
Prospective non-randomized clinical study
Setting
Tertiary VA Medical Center
Subjects and Methods
All patients undergoing panendoscopy with biopsy for suspected head and neck cancer were eligible. Prior to taking tissue samples, the optical probe was placed at three locations to collect diffuse reflectance data. These locations were labeled “tumor”, “immediately adjacent”, and “distant normal tissue”. Biopsies were taken of each of these respective sites. The diffuse reflectance spectra were analyzed, and biomarker specific absorption data was extracted using an inverse Monte Carlo algorithm for malignant and non-malignant tissues. Histopathological analysis was performed and used as the gold standard to analyze the optical biomarker data.
Results
21 patients with mucosal squamous cell carcinoma of the head and neck were identified and selected to participate in the study. Statistically significant differences in oxygen saturation (p = 0.004) and oxygenated hemoglobin (p = 0.02) were identified between malignant and non-malignant tissues.
Conclusion
Our study established proof of principle that optical spectroscopy can be used in the head and neck areas to detect malignant tissue. Furthermore, tissue biomarkers were correlated with a diagnosis of malignancy.
Otolaryngology physicians have significantly different values in end-of-life care than cancer patients and their caregivers. This information is important for efficient allocation of scarce Medicare resources and for effective end-of-life discussions, both of which are key for developing appropriate health policy.
SUMMARY
Objectives
We propose the use of morphological optical biomarkers for rapid detection of human head and neck squamous cell carcinoma (HNSCC) by leveraging the underlying tissue characteristics in aerodigestive tracts.
Materials and Methods
Diffuse reflectance spectra were obtained from malignant and contra-lateral normal tissues of 57 patients undergoing panendoscopy and biopsy. Oxygen saturation, total hemoglobin concentration, and the reduced scattering coefficient were extracted. Differences in malignant and normal tissues were examined based on two different groupings: anatomical site and morphological tissue type.
Results and Conclusions
Measurements were acquired from 252 sites, of which 51 were pathologically classified as SCC. Optical biomarkers exhibited statistical differences between malignant and normal samples. Contrast was enhanced when parsing tissues by morphological classification rather than anatomical subtype for unpaired comparisons. Corresponding linear discriminant models using multiple optical biomarkers showed improved predictive ability when accounting for morphological classification, particularly in node-positive lesions. The false-positive rate was retrospectively found to decrease by 34.2% in morphologically- vs. anatomically-derived predictive models. In glottic tissue, the surgeon exhibited a false-positive rate of 45.7% while the device showed a lower false-positive rate of 12.4%. Additionally, comparisons of optical parameters were made to further understand the physiology of tumor staging and potential causes of high surgeon false-positive rates. Optical spectroscopy is a user-friendly, non-invasive tool capable of providing quantitative information to discriminate malignant from normal head and neck tissues. Predictive models demonstrated promising results for real-time diagnostics. Furthermore, the strategy described appears to be well suited to reduce the clinical false-positive rate.
Otolaryngology-head and neck surgery physician perspectives on end-of-life care differ significantly from cancer patient/caregiver perspectives, even when physicians take a patient's perspective when allocating resources. This demonstrates the challenges inherent in end-of-life discussions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.