Ictal EEG analysis of 10 seizures from 7 patients are included in this study. Our results for 8 seizures match with clinical observations in terms of seizure origin and extracted artifacts. On the other hand, for 2 of the seizures, seizure localization is not achieved using an initial trial of PARAFAC modeling. In these cases, first, we apply an artifact removal method and subsequently apply the PARAFAC model on the epilepsy tensor from which potential artifacts have been removed. This method successfully identifies the seizure origin in both cases.
BackgroundIn 2016, 44,965 people in the United States died by suicide. It is common to see people with suicidal ideation seek help or leave suicide notes on social media before attempting suicide. Many prefer to express their feelings with longer passages on forums such as Reddit and blogs. Because these expressive posts follow regular language patterns, potential suicide attempts can be prevented by detecting suicidal posts as they are written.ObjectiveThis study aims to build a classifier that differentiates suicidal and nonsuicidal forum posts via text mining methods applied on post titles and bodies.MethodsA total of 508,398 Reddit posts longer than 100 characters and posted between 2008 and 2016 on SuicideWatch, Depression, Anxiety, and ShowerThoughts subreddits were downloaded from the publicly available Reddit dataset. Of these, 10,785 posts were randomly selected and 785 were manually annotated as suicidal or nonsuicidal. Features were extracted using term frequency-inverse document frequency, linguistic inquiry and word count, and sentiment analysis on post titles and bodies. Logistic regression, random forest, and support vector machine (SVM) classification algorithms were applied on resulting corpus and prediction performance is evaluated.ResultsThe logistic regression and SVM classifiers correctly identified suicidality of posts with 80% to 92% accuracy and F1 score, respectively, depending on different data compositions closely followed by random forest, compared to baseline ZeroR algorithm achieving 50% accuracy and 66% F1 score.ConclusionsThis study demonstrated that it is possible to detect people with suicidal ideation on online forums with high accuracy. The logistic regression classifier in this study can potentially be embedded on blogs and forums to make the decision to offer real-time online counseling in case a suicidal post is being written.
With a goal of automating visual analysis of electroencephalogram (EEG) data and assessing the performance of various features in seizure recognition, we introduce a mathematical model capable of recognizing patient-specific epileptic seizures with high accuracy. We represent multi-channel scalp EEG using a set of features. These features expected to have distinct trends during seizure and non-seizure periods include features from both time and frequency domains. The contributions of this paper are threefold. First, we rearrange multi-channel EEG signals as a third-order tensor called an Epilepsy Feature Tensor with modes: time epochs, features and electrodes. Second, we model the Epilepsy Feature Tensor using a multilinear regression model, i.e., Multilinear Partial Least Squares regression, which is the generalization of Partial Least Squares (PLS) regression to higher-order datasets. This two-step approach facilitates EEG data analysis from multiple electrodes represented by several features from different domains. Third, we identify which features are more significant for seizure recognition. Our results based on the analysis of 19 seizures from 5 epileptic patients demonstrate that multiway analysis of an Epilepsy Feature Tensor can detect (patient-specific) seizures with classification accuracy ranging between 77-96%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.