The arch index method is a simple and reproducible pedobarographic measurement for the evaluation of the MLA. However, the angles measured on statically obtained radiographs and showing correlations with the arch index may give similar results concerning the MLA. Both static and dynamic methods can be utilized in the evaluation of the MLA.
The aim of this study was to investigate the effectiveness of a novel hydroxyapatite containing gelatin scaffold--with and without local vascular endothelial growth factor (VEGF) administration--as the synthetic graft material in treatment of critical-sized bone defects. An experimental nonunion model was established by creating critical-sized (10 mm. in length) bone defects in the proximal tibiae of 30 skeletally mature New Zealand white rabbits. Following tibial intramedullary fixation, the rabbits were grouped into three: The defects were left empty in the first (control) group, the defects were grafted with synthetic scaffolds in the second group, and synthetic scaffolds loaded with VEGF were administered at bone defects in the third group. Five rabbits in each group were killed on 6th and 12th weeks, and new bone growth was assessed radiologically, histologically and with dual-energy X-ray absorptiometry (DEXA). At 6 weeks, VEGF-administered group had significantly better scores than the other two groups. The second group also had significantly better scores than the control group. At 12 weeks, while no significant difference was noted between the second and third groups, these two groups both had significantly better scores in all criteria compared with the control group. There were no signs of complete fracture healing in the control group. The administration of hydroxyapatite containing gelatin scaffold yielded favorable results in grafting the critical-sized bone defects in this experimental model. The local administration of VEGF on the graft had a positive effect in the early phase of fracture healing.
Our data show that there are four distinct pressure distribution patterns, but the greatest plantar pressure occurs in the middle column of the foot in the majority of healthy individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.