Traditional chemotherapy and radiotherapy for cancer treatment face serious challenges such as drug resistance and toxic side effects. Complementary / Alternative medicine is increasingly being practiced worldwide due to its safety beneficial therapeutic effects. We hypothesized that a super combination (SC) of known phytochemicals used at bioavailable levels could induce 100% killing of breast cancer (BC) cells without toxic effects on normal cells and that microarray analysis would identify potential genes for targeted therapy of BC. Mesenchymal Stems cells (MSC, control) and two BC cell lines were treated with six well established pro-apoptotic phytochemicals individually and in combination (super cocktail), at bioavailable levels. The compounds were ineffective individually. In combination, they significantly suppressed BC cell proliferation (>80%), inhibited migration and invasion, caused cell cycle arrest and induced apoptosis resulting in 100% cell death. However, there were no deleterious effects on MSC cells used as control. Furthermore, the SC down-regulated the expression of PCNA, Rb, CDK4, BcL-2, SVV, and CD44 (metastasis inducing stem cell factor) in the BC cell lines. Microarray analysis revealed several differentially expressed key genes (PCNA, Rb, CDK4, Bcl-2, SVV, P53 and CD44) underpinning SC-promoted BC cell death and motility. Four unique genes were highly up-regulated (ARC, GADD45B, MYLIP and CDKN1C). This investigation indicates the potential for development of a highly effective phytochemical combination for breast cancer chemoprevention / chemotherapy. The novel over-expressed genes hold the potential for development as markers to follow efficacy of therapy.
We have developed a tetracycline (tet)-off regulated expression of CD44s gene in the breast cancer (BC) cell line MCF-7 (B5 clone) and identified TGF-β2 (Transforming Growth Factor beta-2; 3 fold induction) as a potential CD44-downstream transcriptional target by microarray analysis. To further validate this finding, the same RNA samples, used for microarray analysis and their corresponding protein lysates, collected from the BC cell line MCF-7-B5, were examined for CD44 expression in the presence of HA. Our results showed that TGF-β2 mRNA levels were significantly elevated following the removal of tetracycline at 18, 24, and 48 h post-HA stimulation compared to the parental cells. Furthermore, the TGF-β2 precursor protein increased in a time-dependent pattern upon HA-stimulation and in the absence of tetracycline. More interestingly, inhibition of CD44 gene by RNAi method decreased TGF-β2 expression upon HA-stimulation, and subsequently inhibited BC cell invasion in vitro. In addition to identifying TGF-β2 as a target for HA/CD44 signaling, this data suggests that ATF/CREB might be a potential transcription factor linking HA/CD44 activation to TGF-β2 transcription and additional experiments are required for a better understanding of the molecular mechanisms underpinning the novel function of the CD44/ TGF-β2 signaling pathway in breast cancer metastasis.
In Oman, breast cancer is most common, representing approximately more than 25% of all cancers in women. Relatively younger populations of patients (25–40 years) present surprisingly with an aggressive phenotype and advanced tumor stages. In this study, we investigated differential gene expressions in Luminal A, Luminal B, triple-negative and Her2+ breast cancer subtypes and compared data to benign tumor samples. We identified a potential candidate gene BRIP1, showing differential expression in the four breast cancer subtypes examined, suggesting that BRIP1 has the profile of a useful diagnostic marker, suitable for targeted therapeutic intervention. RT-qPCR and Western blotting analysis showed higher BRIP1 expression in luminal samples as compared to triple-negative subtype patient’s samples. We further screened BRIP1 for eventual mutations/SNPs/deletions by sequencing the entire coding region. Four previously identified polymorphisms were detected, one within the 5′-UTR region (c.141-64G > A) and three in the BRCA-binding domain (c.2755T > C, c.2647G > A and c.3411T > C). Kaplan–Meier analysis revealed that patients with overexpression of BRIP1 displayed a poor survival rate (P < 0.05). BRIP1 has a dual function of an oncogene and a tumor suppressor gene in addition to its role as a potential biomarker to predict survival and prognosis. Data obtained in this study suggest that BRIP1 can plausibly have an oncogenic role in sporadic cancers.
Spirulina (SP) (Arthrospira platensis; previously Spirulina platensis) is a filamentous blue-green microalga (cyanobacterium) with potent dietary phytoantioxidant and anticancerous properties. We investigated the chemopreventive effect of SP against 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat breast carcinogenesis, and further studied its underlying mechanisms of action in vitro. Remarkably, SP cleared DMBA-induced rat mammary tumors, which was clearly confirmed by morphological and histological methods. SP supplementation reduced the incidence of breast tumors from 87% to 13%. At the molecular level, immunohistochemical analysis revealed that SP supplementation reduced expression of both Ki-67 and estrogen α. More interestingly, molecular analysis in the in vitro experiments indicated that SP treatment inhibited cell proliferation by 24 hours, which was accompanied by increased p53 expression, followed by increased expression of its downstream target gene, Cdkn1a (alias p21 or p21(Waf1/Cip1)). In addition, SP increased Bax and decreased Bcl-2 expression, indicating induction of apoptosis by 48 hours after SP treatment. To our knowledge, this is the first report of in vivo chemopreventive effect of SP against DMBA-induced breast carcinogenesis in rat, supporting its potential use in chemoprevention of cancer.
The impedance method significantly overestimated platelet counts in microcytic and thrombocytopaenic blood samples. Further attention is therefore needed to improve the accuracy of platelet counts, particularly for patients with conditions associated with microcytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.